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Abstract

Big-Bang Nucleosynthesis with High-Energy Photon Injection

by

Erich Nielsen Holtmann

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Mary K. Gaillard, Chair

The theory of big-bang nucleosynthesis (BBN) is one of the most important

predictions of the union of Friedmann-Robertson-Walker (FRW) cosmology with

the Standard Model of elementary particle physics. Historically, BBN has enjoyed

success in predicting the primordial abundances of the light elements; however,

recent improvements in the observations of these elements (some of which appear

to conict with the predictions of standard BBN) have rekindled interest in non-

standard scenarios of BBN. In my dissertation, I consider the e�ects of long-lived,

radiatively decaying particles on BBN neglecting the hadronic branching ratio of

these particles. The high-energy photons emitted in the decays of these parti-

cles may photodissociate the light elements that were synthesized during BBN.

By comparing the resulting theoretical light-element abundances to the primor-

dial abundances deduced from observation, I derive constraints on the properties
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of long-lived, radiatively decaying particles. Taking into account the recent con-

troversies regarding the observations of the light-element abundances, I perform

my analysis for various combinations of the measurements. I also discuss several

models that predict such radiatively decaying particles, and I derive constraints

on such models.
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Chapter 1

Introduction

Since it was �rst proposed by Gamow [1], big-bang nucleosynthesis (BBN) has

become an important test of both the Standard Model (SM) of particle physics,

and of the standard Friedmann-Robertson-Walker (FRW) cosmology. Currently,

BBN provides a more precise test of the FRW big-bang cosmology than either

measurements of the Cosmic Microwave Background Radiation (CMBR) [2], or

direct measurements of the expansion of the universe [3].

Although BBN takes place at a temperature of about 1 MeV, it can be used

to place constraints on physics at much higher energy scales. BBN currently

gives the most precise determination of �, the ratio of baryons to photons. Thus,

BBN constrains baryogenesis, which may take place at the Grand Uni�ed scale

(� 1014 GeV).

BBN also sets constraints on exotic particles. One of BBN's more famous

results is that N�, the number of light fermionic degrees of freedom during BBN,

is equal to three, with a very small error. This suggests that there is not a fourth

generation of fermions.1 Because nucleosynthesis depends sensitively upon the

1At present, the most precise determination of N� , viz., 2:993� 0:011, comes from measure-

ments of the Z boson width in e+e� colliders [4]. Based on recent astronomical data, however,

paradoxical statements have been made, such as, \N� must be less than 2." In this dissertation,
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particle content of the big-bang plasma, BBN can also be used to place severe

constraints upon the number density of heavy, non-relativistic particles, such as

monopoles, gravitinos, and moduli. This endeavor has a long history [5].

In this thesis, I shall use BBN to set constraints on a speci�c class of exotic

particles: massive (� O(100 GeV)), long-lived (� 106 sec) particles that interact

with other particles only very weakly (e.g., through gravitation). I explore the

possibility that BBN with these particles could agree with observations better

than standard BBN.

These particles have lifetimes so long that they decay after the BBN of the

light elements (D, 3He, 4He, etc.), so they and their decay products may a�ect the

thermal history of the universe. In particular, if the long-lived particles decay into

photons, then the emitted high-energy photons induce electromagnetic cascades

and produce many soft photons. If the energy of these photons exceeds the bind-

ing energies of the light nuclides, then photodissociation may profoundly alter the

light element abundances. Thus, I can impose constraints on the abundance and

lifetime of long-lived particles, by considering the photodissociation processes in-

duced by its decay. There are many works on this subject, such as the constraints

on massive neutrinos and gravitinos obtained by the comparison between the the-

oretical predictions for and the observations [6, 7, 8, 9, 10] of the light-element

abundances.2

I will consider these data and provide another interpretation.
2As pointed out in Ref. [11], even if the parent particle decays only into photons, these photons

will produce hadrons with a branching ratio of at least 1%. However, since there are no data
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In my thesis, I go beyond previous works in several ways:

1. I use more recent data for the light-element abundances and for the neu-

tron lifetime;

2. I use a statistical analysis (proposed by Steigman and Tosi [12]) to include

the abundance of 3He in my constraints in a manner insensitive to the

considerable uncertainty in the chemical evolution of 3He;

3. I present my results in terms of a well-de�ned con�dence level (C.L.),

thus avoiding the paradoxical statements that have plagued some previous

works;

4. I include the uncertainties in the light-element abundances due to the

uncertainties in the nuclear reaction rates;

5. I perform an analysis including the correlations in the light-element abun-

dances as the nuclear reaction rates are varied. I compare this analysis

to a more usual analysis in which such correlations are neglected;

6. I include the photodissociations of 7Li and 6Li. As I will show later, the

destruction of 7Li does not dramatically a�ect the predicted D and 4He,

in the region where the observed D and 4He values are best �t. However,

the 6Li produced by the destruction of 7Li can be two orders of magnitude

on some crucial cross sections involving 7Li and 7Be, I cannot include hadrodissociation in my

statistical analysis. Since I have neglected hadrodissociation, my constraints may be regarded

as conservative bounds.
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more abundant than the standard BBN prediction of 6Li/H � O(10�12).

I discuss the possibility that this process may be the origin of the 6Li that

is observed in some low-metallicity halo stars.

In the next section of the introduction, I review the cosmology and thermo-

dynamics I use to simulate big-bang nucleosynthesis. After that, I discuss the

standard theory of BBN (SBBN). Finally, I recount the history of SBBN and I

2review some non-standard extensions to SBBN.

1.1 Summary of FRW Cosmology and Thermodynamics

Since BBN is an inevitable consequence of FRW \big-bang" cosmology, I will

�rst summarize this model [13]. The assumption that the universe is homogeneous

and isotropic leads one to the Robertson-Walker metric:

d� 2 = dt2 � a2(t)

"
dr2

1� kr2
+ r2d�2 + r2 sin2 �d�2

#
: (1.1)

The parameter k is equal to +1; 0; and �1 in closed, at, and open universes,

respectively. The function a(t) is the scale factor of the universe. To �nd the time

evolution of the scale factor, one must assume an energy-stress tensor T �
� for the

universe and use Einstein's equations:

R�
� � 1

2
R�

�g
�
� = T �

�=M
2
� + �g��; (1.2)

where M� = 1=
p
8�G ' 2:4 � 1018 GeV is the reduced Planck mass. � is the

cosmological constant; it is equivalent to a vacuum energy density. In terms of

4



the scale factor a , the Ricci tensor is

R�
� =

2
66666666666664

�3 �a
a

0 0 0

0 � �a
a
� 2 _a2

a2
� 2 k

a2
0 0

0 0 � �a
a
� 2 _a2

a2
� 2 k

a2
0

0 0 0 � �a
a
� 2 _a2

a2
� 2 k

a2

3
77777777777775
: (1.3)

I will assume that the universe behaves as a perfect uid with energy density

� and pressure p:

T �
� = diag(�;�p;�p;�p); (1.4)

This is consistent with the assumptions of a homogeneous, isotropic universe.

(Note: I absorb the cosmological constant � into a contribution to T �
� of the

form � = �M2
� and p = ��M2

� .) With this energy-stress tensor, the Einstein

equation can be decomposed into its � = � = i component:

2
�a

a
+

_a2

a2
+
k

a2
= � p

M2�
: (1.5)

and its � = � = 0 component:

_a2

a2
+

k

a2
=

�

3M2�
: (1.6)

The latter equation is known as the Friedmann equation. It is used to �nd the

time evolution of the scale factor. Thus, Einstein's equations predict in general a

dynamic universe _a 6= 0; Hubble's observations of the red-shifts of galaxies imply

that _a > 0. Subtracting Eqn. (1.6) from Eqn. (1.5) yields

�a=a = �� + 3p

6M2�
; (1.7)
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so �a=a < 0 as long as � + 3p > 0. (We will see that both relativistic and non-

relativistic matter satisfy this last inequality.) This implies that the expansion of

the universe is slowing down, so at some �nite time in the past, a ! 0. 3 This

event of divergent pressure, temperature, and density is known as the \big bang."

The Friedmann equation is usually written in a slightly di�erent form. In terms

of the expansion rate of the universe H(t) = _a(t)=a(t), (known as the \Hubble

parameter"), one can write the Friedmann equation as

� = 3M2
�H

2 + 3M2
�k=a

2: (1.8)

From this equation, one sees that the \critical density" �C , at which k = 0 (also

called a \at" universe), is given by �C = 3M2
�H

2. Since our universe is nearly

at, I will �nd it convenient later on to use the ratio of the energy density to the

critical density: 
 = �=�C .

In order to solve the Friedmann equation (1.8) for the time evolution of H(t), I

need the evolution of the energy density. Using the Bianchi identity for Einstein's

equations, one �nds that the energy-stress tensor is conserved:

T �
�;� = 0: (1.9)

The � = 0 component yields the Law of Conservation of Energy:

d(�a3) = �pd(a3): (1.10)

3In the theory of ination, vacuum energy (p = �� < 0) dominates the very early universe,

so t! �1 as a ! 0. In any case, Einstein's equations are invalid for a<�M�1
�

or _a=a>�M�; a

proper quantum theory of gravity is needed in order to extrapolate all the way back to a = 0.
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To �nd the evolution of the energy density �, I will use the relation between �

and the pressure p [14]. In thermal equilibrium, these quantities can be calculated

using the phase-space occupancy in terms of the momentum p (or the energy

E =
p
p2 +m2), the chemical potential �, and the temperature T :

f(p) =
1

exp[(E � �)=T ]� 1
; (1.11)

where + gives the Fermi-Dirac occupancy for fermions, and � gives the Bose-

Einstein occupancy for bosons. I can then �nd the energy density �, the pressure

p, and the number density n of an ideal gas of a particle species with g internal

degrees of freedom:

� =
g

(2�)3

Z
d3pE(p)f(p) (1.12)

p =
g

(2�)3

Z
d3p

p2

3E(p)
f(p) (1.13)

n =
g

(2�)3

Z
d3pf(p): (1.14)

For \hot" (i.e. relativistic), non-degenerate matter and radiation (e.g., pho-

tons), these integrals can be evaluated by using the limits

T � m; T � � (1.15)

to obtain

�R =

8>>><
>>>:

�2

30
gT 4 (Bosons)

7
8
�2

30
gT 4 (Fermions)

(1.16)

pR = �=3 (1.17)

nR =

8>>><
>>>:

�(3)
�2
gT 4 (Bosons)

3
4
�(3)
�2
gT 4 (Fermions)

(1.18)
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For \cold" (i.e. non-relativistic), non-degenerate matter, the integrals can be

evaluated by using the limits

m� T; m� � (1.19)

to obtain

nM = g
�
mT

2�

�3=2
exp

 �(m� �)

T

!
(1.20)

�M = mn (1.21)

pM = nT � �: (1.22)

For cold matter (viz., baryons, my hypothetical late-decaying particle, and

electrons in the later stages of BBN), pM ' 0, so conservation of energy (1.10)

implies that the energy density red-shifts as �M / a�3. Hot matter (viz., photons,

neutrinos, and electrons/positrons in the early stages of BBN), also called radia-

tion, has the energy-pressure relation pR = �R=3, so its energy density red-shifts as

�R / a�4. (Since �R / gT 4, one can also deduce that a / g�1=4T�1.) For vacuum

energy density (p� = ���), the energy density does not red-shift: �� / a0 (hence

the name \cosmological constant").

The present-day radiation energy density is usually assumed to be negligible.

The cosmic microwave background radiation (CMBR) (at a temperature of '

3 K [2]) has an energy density of � � 10�51 GeV, so 
 � �=�C � 10�4.

Non-degenerate neutrinos (assumed in SBBN) would make a contribution of the

same order. In order for there to be suÆcient time for structure formation, any

other primordial radiation component must also be negligible today. On the other

8



hand, luminous baryonic matter (i.e., stars) makes a present-day contribution of


lum � 1%, which is much greater than that of radiation.

Since radiation is negligible, the COBE measurements of the power spectrum

of the CMBR can be used to constrain cold matter and vacuum energy [15] to

0:3 < 
M + 
� < 1:5. Combining this with the constraint 
� ' 
M + 0:5 from

distance measurements from supernovae [16], it has been deduced [17] that at the

95% con�dence level,


M = 0:25+0:18�0:12 (1.23)


� = 0:63+0:17�0:23 (1.24)

Thus, today's universe is nearly at, and it is dominated by vacuum energy or a

mixture of vacuum energy and cold matter4.

At early times, 
 is even closer to 1 than it is today. In my dissertation, I shall

be interested in the era when T
>� 1 keV, so that a � T�1 has less than 1/300 of

its present value. At those times, �M / a�3 and �R / a�4 dominate over �� / a0

In a matter-dominated (MD) or radiation-dominated (RD) universe, � = Ca�n

(MD: n = 3; RD: n = 4). The Friedmann equation (1.8) can then be rewritten:

_a2 =
C

3M2�

1

an�2
� k: (1.25)

As a ! 0, the �rst term on the right-hand side becomes much larger than

k = �1; 0; 1, so one may neglect k. In this limit, the Friedmann equation then

4The observational data rule out the theoretical prejudice that 
� = 0. however, it has

been suggested that there may be systematic errors in the supernovae data, such as an unknown

evolutionary e�ect; possible systematic errors are discussed in Reference [17].
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simpli�es:

� = 3M2
�H

2: (1.26)

In the remainder of this work, I shall set k = 0. 5

The �nal ingredient necessary to an understanding of the time evolution of the

energy density and pressure is a model of particle physics. Here I will assume the

Standard Model (I will consider some extensions later). In a radiation-dominated

era, such as BBN, the energy density and pressure can conveniently be expressed

in terms the e�ective number of relativistic degrees of freedom:

g� =
X

i=bosons

�
Ti
T

�4
+
7

8

X
i=fermions

�
Ti
T

�4

�R =
�2

30
g�T

4 (1.27)

pR = �R=3:

T is the photon temperature, and Ti is the temperature of species i. For example,

for 100 MeV>� T >� 1 MeV, the relativistic species are photons, three generations

of neutrinos, and electrons/positrons. They are all in thermal equilibrium with a

common temperature T , so g� = 10:75. As the temperature falls, weak reactions

freeze out and the neutrinos decouple. At T ' 1 MeV, electrons and positrons be-

come non-relativistic and annihilate (leaving only a tiny remnant of cold electrons);

their energy density is dumped into photons, thus raising the photon temperature

5In fact, using this limiting form of the Friedmann equation, one can see thatH2 / � = Ca�n,

so 
� 1 = k=a2H2 varies as an�2 / 1=Tn�2
 . Thus, 
 was very close to one, when T

>
� 1 keV.
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relative to that of neutrinos. Entropy considerations [14] yield

T� =
�
4

11

�1=3
T (1.28)

for T � 1 MeV. Thus, after electron-positron annihilation (T <� 30 keV), g� =

3:36.

1.2 Summary of Standard Big-Bang Nucleosynthesis

SBBN was �rst proposed by Gamow [1]. His idea was that the elements are

synthesized in out-of-equilibrium processes in the early expanding universe. A

subsequent re�nement to his original theory is that in the early universe (t � 1

sec, T � 1 MeV), neutrons, protons, and the heavier nuclides are kept in kinetic

and chemical equilibrium by rapid weak and nuclear reactions (see Table 1.1).6

However, as the universe expands, these reactions freeze out, one by one. (As a

rule of thumb, a given reaction becomes cosmologically negligible when its rate

� falls below the expansion rate H of the universe.) For example, one of the

reactions that maintains chemical equilibrium between protons and neutrons is

p+ e� *) n+ �e, which (in the limit T � (mn�mp); me) has a rate of � ' G2
FT

5.

Combining Eqns. (1.26) and (1.27) for a hot universe yields H = �p
90

p
g� T

2

M�

, so

6I will only consider T � mW , because the history of the very early universe is essentially

erased by the thermal equilibration during mW � T � 1 MeV. I will, however, consider some

`leftovers' from the very early universe: the baryon to photon ratio; and the abundance of heavy,

long-lived particles.
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that

�=H ' (T=0:8 MeV)3; (1.29)

i.e., below the freeze-out temperature TF ' 0:8 MeV, neutrons fall out of chem-

ical equilibrium with protons. Similarly, each of the fusion reactions freezes out:

4He synthesis proceeds essentially to completion (when almost all neutrons have

been used up); 12C production freezes out before it can begin; and trace amounts

of the other light elements are left over. Finally, by t ' 1 hr (T ' 20 keV),

primordial nucleosynthesis is complete.

In standard big-bang nucleosynthesis, one assumes standard FRW cosmology

and the Standard Model of particle physics (with three generations of massless

neutrinos). Furthermore, one assumes zero neutrino chemical potentials and zero

cosmological constant. These assumptions leave only one free parameter, viz., the

ratio � of the baryon number density to the photon number density (or, alterna-

tively, the ratio 
b = 4� 107� of the baryon energy density �baryon to the critical

density �C). Taking the very conservative bound 
b � 0:006 derived from ob-

served luminous matter [14], and the bound 
b � 
 = 1 (since we assume a at

universe), one obtains the limits

1:6� 10�10 < � < 2:7� 10�8: (1.30)

Note that this range is independent of BBN. Historically, SBBN has been used to

give the most precise determination of �, viz., a few �10�10.

In my computer simulation of BBN (based upon the code of Kawano [26]),

12



I follow the time evolution of the photon temperature T , the electron chemical

potential �e, the baryon-to-photon ratio �, and the abundances of the various

nuclear species (and of my hypothetical radiatively-decaying particle X). From

these quantities, I can use Eqns. (1.12){(1.22) to compute the energy densities

and pressures of all the particles in the big-bang plasma: photons, neutrinos,

electrons/positrons, and the nuclides (and X). To time-evolve T , �e, �, and the

abundances, the code integrates a set of mixed partial di�erential equations. I

will omit here the details of the equations for dT=dt, d�e=dt, and d�=dt, except

to mention that they are derived from the Friedmann equation (1.26) and Eqns.

(1.12){(1.14). The time evolution of the abundances is computed using a matrix

of Boltzmann equations. For example, if the nuclide AiZi has only two-body to

two-body reactions of the form

Ni(
AiZi) +Nj(

AjZj)*) Nk(
AkZk) +Nl(

AlZl); (1.31)

then the Boltzmann equation for the abundance Yi, the number ratio of AiZi to

baryons, is

dYi
dt

=
X
j;k;l

Ni

0
@�Y Ni

i Y
Nj

j

Ni!Nj!
[ij]k +

Y Nl

l Y Nk

k

Nl!Nk!
[lk]j

1
A (1.32)

where [ij]k and [lk]j are the forward and backward reaction rates, respectively.

The observable results of this theoretical simulation are the abundances of the

light elements. Densities are not suitable observables, because they continually

decrease as the universe expands. Instead, I consider the ratio of number densities

n (or of energy densities �), which can also be thought of as the number per
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unit comoving (i.e., moving with the general expansion) volume. Using standard

notation, the quantities in which I am interested are:

y2 = nD=n1H; (1.33)

y3 = n3He=n1H; (1.34)

Y = �4He=�baryon; (1.35)

y6 = n6Li=n1H; (1.36)

y7 = n7Li=n1H: (1.37)

where nZA is the number density of the nuclide AZ.

One can better understand SBBN by looking at the light-element abundances

as functions of time, as shown in Fig. 1.1. At high temperatures (T > 1 MeV, t < 1

sec), all nuclides are in thermal and chemical equilibrium. Entropy is more impor-

tant than binding energy in the free energy, so free protons and neutrons dominate

over bound nuclei. As the temperature decreases, the weak reactions freeze out,

so neutrinos decouple when T ' 0:8 MeV (see Eq. (1.29)) and neutron-proton

inter-conversion ceases (T ' 0:7 MeV). At this time, the neutron-to-proton ratio

is given by the Boltzmann factor exp(�(mn �mp)=T ) ' 1=6; after this, the n=p

ratio decreases through free neutron decay n! p+e�+ ��e, with a lifetime of 886.7

sec [4]. At temperatures of about T ' 0:5 MeV, the abundance Y of 4He falls

below its chemical equilibrium value, because the Coulomb barrier is becoming sig-

ni�cant relative to the temperature, and also because the abundance of helium's

precursors (D, 3He, and 3H) is very small (the so-called \deuterium bottleneck").

14



When T ' me=3, positrons and electrons annihilate into photons, thereby de-

creasing the baryon-to-photon ratio � by a factor of (4=11)1=3 (see Eq. (1.28)).

When T ' 50 keV, essentially all free neutrons have been bound up into 4He. By

this time, free-neutron decay has reduced the n=p ratio to about 1=7; a simple

calculation shows that the 4He abundance will be Y ' 1=4.

Primordial nucleosynthesis concludes by T ' 20 keV. The lack of a stable

isotope with nuclear weight A = 8 prevents any double-� reactions; the triple-

� reaction 3 4He ! 12C is blocked by the Coulomb barrier. At later times, all

primordial (as opposed to stellar) nuclear reactions are prevented by both the

Coulomb barrier and the diluteness of the nuclei. Small remnants of D, 3He,

and 3H do not get bound up into 4He. Even smaller amounts of 7Li, 7Be, and

6Li are synthesized in the big bang. After primordial nucleosynthesis, all remaining

free neutrons soon decay into protons, 3H �-decays into 3He with a lifetime of

5:6 � 108 sec, and 7Be decays through electron capture into 7Li with a lifetime

of 6:6 � 106 sec. Thus, the only abundances of interest today are those in Eqs.

(1.33){(1.37). I shall refer to these abundances (after n, 3H, and 7Be decay) as

the \primordial" abundances.

One can gain more insight into SBBN by considering the primordial abun-

dances as functions of �, as shown in Fig. 1.2. The dependence of the abundances

on � can be seen intuitively [5, 27]. The 4He abundance is a gentle, monotonically

increasing function of �. As � increases, 4He is produced earlier because the \deu-

terium bottleneck" is overcome at a higher temperature due to the higher baryon
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Figure 1.1: SBBN prediction of the abundances of the light elements, as functions

of time, for � = 3� 10�10.
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density. Fewer neutrons have had time to decay, so more 4He is synthesized. Since

4He is the most tightly bound of the light nuclei, D and 3He are fused into 4He.

The surviving abundances of D and 3He are determined by the competition be-

tween their destruction rates and the expansion rate. The destruction rates are

proportional to �, so the larger � is, the longer the destruction reactions continue.

Therefore, D/H and 3He/H are monotonically decreasing functions of �. More-

over, the slope of D/H is steeper, because the binding energy of D is smaller than

that of 3He.

The graph of 7Li/H has a trough near � � 3� 10�10. For a low baryon density

� <� 3� 10�10, 7Li is produced by 3H(�; )7Li and is destroyed by 7Li(p; �)4He. As

� increases, the destruction reactions become more eÆcient and the produced 7Li
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tends to decrease. On the other hand, for a high baryon density � >� 3� 10�10, 7Li

is mainly produced through the electron capture of 7Be. Because 7Be production

through 3He(�; )7Be becomes more e�ective as � increases, the synthesized 7Li

increases. The \trough" results from the overlap of these two components. The

dominant source of 6Li in SBBN is D(�, )6Li. Thus, the � dependence of 6Li/H

resembles that of D/H.

I have also plotted the one-� observational constraints on the abundances of

4He, D/H, and 7Li/H, as well as the proto-solar abundances of (D+3He)/H and

3He/H. I will discuss the observations in detail in Chapters 3 and 5. (I have

drawn two boxes for both 4He and D/H, because the literature gives multiple,

inconsistent values for both of these abundances. 3He/H is shown as an upper

bound, because the proto-solar value includes the primordial 3He/H plus stellar

3He/H.) For now, it suÆces to note that the theory gives a favored range of � for

each of the observed abundances. The amount of overlap of the boxes is a rough

measure of the consistency between theory and observations. In Chapters 4 and 5,

I will carefully analyze the consistency between theory and observation. But from

Fig. 1.2, one can see that low 4He is consistent with high D/H (for � ' 2� 10�10),

and high 4He is consistent both with low D/H and with the proto-solar data (for

� ' 5 � 10�10). (Because of the large uncertainty in 7Li/H, 7Li/H is consistent

with all the other data.) Moreover, since the 4He abundance has a shallow slope

at high �, the high 4He value gives a large uncertainty in �. Thus, even the high

4He value is marginally consistent with the high D/H, for � ' 2 � 10�10 (this
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value is determined primarily by the high D/H). However, in SBBN, low 4He is

inconsistent with low D/H. 7

1.3 History of BBN Theory

Since Gamow's original idea in 1946 [1], BBN has become (together with the

CMBR and the direct measurement of the Hubble recession of galaxies) one of the

best reasons to believe the theory of the big bang. Gamow and Alpher originally

performed analytic computations of the light-element synthesis in non-equilibrium

nuclear reactions in the early, rapidly expanding universe. Alpher, Follin, and Her-

man [28] pointed out the importance of particle reactions in determining the initial

conditions for BBN, such as the initial n=p ratio; Hoyle and Taylor [29] analytically

calculated the primordial 4He abundance. Peebles [30] wrote the �rst computer

code to track the 4He abundance. The precursor to the code I use was written in

1967 by Wagoner, Fowler, and Holye [31]. Their code includes the nuclear reac-

tions for all the light elements (see Table 1.1) and numerically integrates the mixed,

partial di�erential equations for the abundances of the light elements. With the

improved accuracy of the theory, BBN became an important test of big-bang cos-

mology. Other groups have written independent codes [32], thus providing checks

on each others' work. The \standard code" for BBN, written by Wagoner [33], has

been improved with corrections for �nite temperature and radiative e�ects [34].

7In fact, from my analysis in Chapter 4 based upon 4He, D/H, and 7Li, I �nd that this last

case is excluded at the 91.5% C.L.

18



Kawano [26] improved the numerical integration and documentation of this code.

In my research, I have modi�ed Kawano's version to simulate non-standard BBN

with a radiatively decaying particle. K. Kohri [35] has independently modi�ed

Kawano's code to simulate the same scenario, thus providing a check on my work

(and vice versa).

My work on big-bang nucleosynthesis was originally motivated by the claim

by Hata et al. [36] of a \crisis" in BBN; viz., that recent light-element observa-

tions seemed to conict with the theoretical predictions of standard BBN. Their

point was that standard BBN predicts too much 4He, if the baryon number den-

sity is determined by the D abundance inferred from solar-system observations;

equivalently, standard BBN predicts too much D, if the baryon number density

is determined by the 4He observations. Inspired by this \crisis," many people

re-examined BBN. Some have kept standard BBN and argued that the systematic

errors in the observations have been underestimated; others have accepted the

observations and investigated non-standard BBN. Such non-standard scenarios of

BBN include allowing degenerate electron neutrinos [37] (i.e., a large neutrino

chemical potential). Another non-standard scenario assumes a massive unstable

neutrino with mass about 1 MeVand lifetime about 1 sec [38]. In a previous

paper [39], I investigated a non-standard theory of BBN in which radiatively-

decaying, massive particles induce electromagnetic cascades. For a certain range

of parameters in our model, my colleagues and I found that the photons in these

cascades destroy only D, so that the predicted abundances of D, 3He, and 4He �t
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the observations.

However, since the \BBN crisis" was claimed, the situation concerning the

observations of deuterium has become more complicated. In addition to the proto-

solar and interstellar medium measurements of D/H, now the D abundances in

highly red-shifted quasar absorption systems (QAS) have been measured. Because

such systems show very low levels of \metals" (i.e., elements heavier than 4He)

such as nitrogen, oxygen, and iron, the abundance of D in these QAS is considered

to be the primordial value. Both sets of D/H measurements have their problems,

as I will discuss in Chapter 3.

Moreover, there are also di�ering determinations of the primordial 4He abun-

dance. Hata et al. used a relatively low 4He abundance (viz., Y ' 0:234, where Y

is the primordial mass fraction of 4He) [40, 41]. However, a higher 4He abundance

(Y ' 0:244) has also been reported [42, 43, 44]. It has been noted that this higher

observation alleviates the discrepancy with standard BBN theory [45]. The typical

errors in 4He observations are less than ' 0:005, so I have discordant data for 4He.

Since I have discordant 4He abundances and new observations for D, the pre-

vious constraints on the radiative decay of long-lived particles must be revised. In

addition, the statistical analyses on radiatively decaying particles are insuÆcient

in the previous works. Therefore, in my dissertation, I perform a better statis-

tical analysis of a long-lived, radiatively-decaying particle, and of the resultant

photodissociations, in order to constrain the abundances and lifetimes of long-

lived particles. In deriving the constraints, I use two observed values of the 4He
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abundance (high and low), and three sets of data for the D/H abundance (high

QAS D/H, low QAS D/H, and proto-solar (D+3He)/H and 3He/H), for a total of

six combinations of the observations. I use all values because I believe that it is

premature to decide which data are correct. For the low measurement of the 4He

abundance and either the low QAS measurement of D/H or the proto-solar data,

I show that the agreement is poor between observations and the standard BBN

theory. Moreover, I show in the case of low QAS D/H that a long-lived particle

with an appropriate abundance and lifetime can solve the discrepancy. In the

other cases, standard BBN �ts the observations, so I derive stringent constraints

on the properties of long-lived particles.

In Ch. 2, I investigate how the radiative decay of a long-lived particle a�ects the

primordial abundances of the light elements. I also discuss the uncertainties in my

calculations. In Ch. 3, I review the primordial abundances that are extrapolated

from observations, using QAS systems for the deuterium measurements. In Ch. 4,

I describe the statistical analysis I use to compare the predicted abundances to

the observed abundances, and I present the results of my analysis. In Ch. 5, I

consider the observed proto-solar and interstellar-medium abundances of D and

3He, I describe how I use this information to compare to the predicted primordial

abundances, and I present my results. I consider various particle-physics models

for my long-lived, radiatively decaying particle in Ch. 6. Finally, Ch. 7 is devoted

to discussion and the conclusion.
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Nucleosynth. Reaction One-� Uncertainty Ref.
1. n+*) p+ e� + �� 1.9 sec [4]
2. 3H! e� + �� + 3He [18]
3. 8Li! e� + �� + 24He [19]
4. 12B! e� + �� + 12C [20]
5. 14C! e� + �� + 14N [21]
6. 8B! e+ + � + 24He [19]
7. 11C! e+ + � + 11B [20]
8. 12N! e+ + � + 12C [20]
9. 13N! e+ + � + 13C [21]
10. 14O! e+ + � + 14N [21]
11. 15O! e+ + � + 15N [21]
12. 1H(n; )D 7% [22]
13. D(n; )3H [23]
14. 3He(n; )4He [23]
15. 6Li(n; )7Li [24]
16. 3He(n; p)3H 10% [22]
17. 7Be(n; p)7Li 9% [22]
18. 6Li(n; �)3H [25]
19. 7Be(n; �)4He [23]
20. D(p; )3He 10% [22]
21. 3H(p; )4He [25]
22. 6Li(p; )7Be [25]
23. 6Li(p; �)3He [25]
24. 7Li(p; �)4He 8% [22]
25. D(�; )6Li [25]

26. 3H(�; )7Li

8>>><
>>>:
T > 10 GK : 8:1%;
T < 10 GK : 0:29� 0:059�1=2

�0:072� + 0:040�3=2 � 0:0056�2;
for � = T=GK+ 0:0419

[22]

27. 3He(�; )7Be

8>>><
>>>:
T > 10 GK : 9:7%;
T < 10 GK : 0:27� 0:15�1=2

+0:040� � 0:0025�3=2 � 0:0002�2;
for � = T=GK+ 0:783

[22]

28. D(d; n)3He 10% [22]
29. D(d; p)3H 10% [22]
30. 3H(d; n)4He 8% [22]
31. 3He(d; p)4He 8% [22]
32. 3He(3He; 2p)4He [25]
33. 7Li(d; n�)4He [25]
34. 7Be(d; p�)4He [25]

Table 1.1: The nuclear reactions responsible for the synthesis of the light elements.
Uncertainties are given for the twelve most important reactions [25, 22].
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Figure 1.2: SBBN prediction of the abundances of the light elements. The solid

lines are the central values of the predictions, and the dotted lines represent the

one-� uncertainties. The boxes and lines with arrows denote the one-� observa-

tional constraints. The gray box indicates (D+3He)/H; the black boxes in the

second panel indicate D/H.
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Chapter 2

X-Decay and Photon Injection

In this dissertation, I am primarily concerned with the e�ects of photo�ssion

of the light elements. This photo�ssion is caused by the electromagnetic cascade

initiated by the radiative decay of a massive, long-lived particle (which I shall

call X). The most interesting cases are when the cascade-photon energies are

comparable to the binding energies of the light nuclides (see Table 2.1); then

there can be selective photo�ssion of some nuclear species, but not of others. I

therefore begin this chapter with a discussion of the photon spectrum formed in

electromagnetic cascades in the big-bang plasma (see Sec. 2.1).

Once I have the photon spectrum, I then use it in a modi�ed version of the

Kawano nucleosynthesis code to calculate the light-element abundances for a range

of lifetimes and abundances of X, and for a range of baryon-to-photon ratios �. I

discuss my results in Sec. 2.2.

Finally, in Sec. 2.3 I discuss various sources of error in my theoretical calcula-

tions of the abundances. I estimate the error by two methods: Monte-Carlo, and

linear propagation of errors. I compare the two methods, both for reliability and

for eÆciency.
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AZ Binding Energy (MeV)
D 2.22

3He 7.72
4He 28.3
6Li 32.0
7Li 39.2

Table 2.1: The binding energies of some light nuclides AZ.

2.1 Photon Spectrum

In order to discuss the e�ect of high-energy photons on BBN, I need the shape

of the photon spectrum induced by the primary high-energy photons fromX decay.

For 10 keV>� T >� 10 eV, the background thermal bath of the big bang is a

mixture of photons BG, electrons e
�
BG, and nucleons and nuclei NBG. In this

bath, high-energy photons lose their energy by various cascade processes. These

electromagnetic cascades induce the photon spectrum, as discussed in various lit-

erature [46]. The important processes in my case are:

� Double-photon pair creation ( + BG ! e+ + e�)

� Photon-photon scattering ( + BG !  + )

� Pair creation in nuclei ( +NBG ! e+ + e� +N)

� Compton scattering ( + e�BG !  + e�)

� Inverse Compton scattering (e� + BG ! e� + )

(I may neglect double Compton scattering +e�BG *) ++e�, because Compton

scattering is more important for thermalizing high-energy photons.) In our anal-

25



ysis of the spectrum [35], my colleagues and I numerically solved the Boltzmann

equation for the spectral distribution of photons f(E) � dn=dE, including the

above interactions [8, 9].

Fig. 2.1 shows the photon spectrum for several background temperatures T .

Roughly speaking, there is a large drop-o� at E � m2
e=22T for each temperature.

Above this threshold, the photon spectrum is extremely suppressed.

The qualitative behavior of the photon spectrum can be understood in the fol-

lowing way. If the photon energy is high enough, then double-photon pair creation

is so eÆcient that this process dominates the cascade. However, once the photon

energy becomes much smaller than O(m2
e=T ), double-photon pair creation is kine-

matically blocked. Numerically, this threshold is aboutm2
e=22T , as seen in Fig. 2.1.

Below this threshold, photon-photon scattering dominates. However, since the

scattering rate due to this process is proportional to E3
 , photon-photon scatter-

ing becomes unimportant in the limit E ! 0. Therefore, for E � O(m2
e=T ),

the remaining processes (pair creation in nuclei, Compton scattering, and inverse

Compton scattering) are the most important.

The crucial point is that the scattering rate for E
>�m2

e=22T is much larger

than that for E � m2
e=22T , since the number of targets in the former case (pho-

tons) is several orders of magnitude larger than in the latter (fermions and nu-

clei). This is why the photon spectrum is extremely suppressed for E
>�m2

e=22T .

Photons with energies above this threshold will induce electromagnetic cascades

(and transfer their energy to low-energy particles) before they encounter a nu-
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cleus and dissociate it. As a result, if the X particle decays in a thermal bath

with temperature T >�m2
e=22Q (where Q is the binding energy of a nuclide), then

photodissociation is ine�ectual.

2.2 Resulting Abundances

Once the photon spectrum is formed, it induces the photodissociation of the

light nuclei, which modi�es the result of BBN. This process is governed by the

following Boltzmann equation:

dnN
dt

+ 3HnN =

"
dnN
dt

#
SBBN

� nN
X
N 0

Z
dE�N!N 0(E)f(E)

+
X
N 00

nN 00

Z
dE�N 00!N(E)f(E); (2.1)

where nN is the number density of the nucleus N , and [dnN=dt]SBBN denotes the

SBBN contribution to the Boltzmann equation. I modi�ed the Kawano code [26]

to take account of the non-thermal photon spectrum and the photodissociation

processes. Using my modi�ed code, I calculated the abundances of the light ele-

ments. The photodissociation processes I included in my calculation are listed in

Table 2.2.

The abundances of light nuclides will be functions of the baryon-to-photon

ratio (�), the lifetime of X (�X), the mass of X (mX), and the abundance of X
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Photo�ssion Reactions 1� Uncert. Threshold Ref.
1. D +  ! p + n 6% 2.2 MeV [47]
2. 3H +  ! n+D 14% 6.3 MeV [48, 49]
3. 3H +  ! p+ 2n 7% 8.5 MeV [49]
4. 3He +  ! p+D 10% 5.5 MeV [50]
5. 3He +  ! n+ 2p 15% 7.7 MeV [50]
6. 4He +  ! p+ 3H 4% 19.8 MeV [50]
7. 4He +  ! n+ 3He 5% 20.6 MeV [51, 52]
8. 4He +  ! p+ n+D 14% 26.1 MeV [53]
9. 6Li +  ! anything 4% 5.7 MeV [54]
10. 7Li +  ! 2n + anything 9% 10.9 MeV [54]
11. 7Li +  ! n + 6Li 4% 7.2 MeV [54]
12. 7Li +  ! 4He + anything 9% 2.5 MeV [54]
13. 7Be +  ! p+ 6Li
14. 7Be +  ! anything except 6Li

Table 2.2: Photodissociation processes, and the one-� uncertainty in the cross
sections. Since there are no experimental data on photodissociation of 7Be, I
assume in this dissertation that the rate of Reaction 13 is the same as that of
Reaction 11, and that the rate of Reaction 14 is the sum of the rates of Reactions
10 and 12.

relative to photons1 before electron-positron annihilation:

YX = nX=n : (2.2)

(I assume for simplicity that X !  +  with a 100% branching ratio. Since

photo�ssion depends upon the total amount of injected photon energy, and not

upon the details of the spectrum of the injected photons, the correction if X !

 + invisible is trivial: simply replace mXYX with �;injected=n;background. I will

discuss the e�ect of other decays in Section 4.3.) The abundance is essentially the

number of X in a comoving volume, and it evolves with time approximately as

1Note that this convention di�ers from yi, which is the number density of nuclide i relative

to that of hydrogen, and from Y , which is the energy density of 4He relative to that of baryons.
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YX ' YX0e
�t=�X , except for corrections involving photon production during the

electron-positron annihilation and during X-decay. My full numerical simulation

is needed to properly account for these corrections.

In my numerical BBN simulations, I found that the nuclide abundances depend

not on mX and YX separately, but only on their product mXYX . This is because

double-photon pair creation is very eÆcient in moving energy from the short end

of the spectrum to the long end, so the only important question is how much (not

at what wavelength) photon energy is injected into the big-bang plasma. Thus,

once �X , mXYX, and � are �xed, I can calculate the primordial abundances of the

light elements. In Figs. 2.2 { 2.6, I show these theoretical abundances y2; y3; Y; y6,

and y7 in the mXYX vs. �X plane, at �xed �.

The qualitative behaviors of the abundances can be understood in the following

way. If the mass density of X is small enough, then the e�ects of X are negligible,

and hence the results of SBBN are reproduced. However, once the mass density

gets larger, the SBBN results are modi�ed. The e�ects of X depend strongly

upon �X , the lifetime of X. As I mentioned in the previous section, photons with

energy greater than � m2
e=22T participate in pair creation before they can induce

photo�ssion. Therefore, if the above threshold energy is smaller than the nuclear

binding energy, then photodissociation is ine�ectual.

If �X
<� 104 sec, then m2

e=22T
<� 2 MeV at the decay time of X, and photodis-

sociation is negligible for all elements. In this case, the main e�ect of X is on the

4He abundances: if the abundance of X is large, its added energy density speeds
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up the expansion rate of the universe, according to the Friedmann equation (1.26)

(C is a constant):

�2

30
g�T 4 + CT 3 = 3m2

�H
2: (2.3)

Thus, Eqn (1.29) is modi�ed:

�=H ' (T=0:8 MeV)3 � O(T 2): (2.4)

The neutron freeze-out temperature (where �=H = 1) becomes higher, so the

ratio of n=p / exp(�(mn �mp)=T ) becomes higher. Thus, the
4He abundance is

enhanced relative to SBBN.

If 104 sec<� �X
<� 106 sec, then 2 MeV<�m2

e=22T
<� 20 MeV. In this case,

4He remains intact, but D is e�ectively photodissociated through the process

D +  ! p + n. When �X
>� 105 sec, m2

e=22T
>� 7:7 MeV (the binding energy

of 3He), so 3He is dissociated for �X � 105 sec and large enough abundances

mXYX
>� 10�8 GeV. If the lifetime is long enough (�X

>� 106 sec), 4He can also be

destroyed e�ectively. In this case, the destruction of even a small fraction of the

4He can result in signi�cant production of D and 3He, since the 4He abundance

is originally several orders of magnitude larger than that of D and 3He. This can

be seen in Figs. 2.2, 2.3, and 2.4: for �X
>� 106 sec and mXYX

<� 10�10 GeV, the

abundance of D and 3He changes drastically due to the photodissociation of 4He.

If mXYX is large enough, all the light elements are destroyed eÆciently, which

results in very small abundances.

So far, I have discussed the theoretical calculation of the light element abun-

30



dances in a model withX decay. In the next chapter, I will compare the theoretical

calculations with observations, and I will derive constraints on the properties of

X. But before I do that, I will discuss how I handle the uncertainties in the

theoretical calculations.

2.3 Uncertainties and Linear Propagation of Error

In addition to incorporating photo�ssion reactions into Kawano's nucleosyn-

thesis code [26], I also modi�ed the code to determine the e�ects of the uncertain-

ties in the rates of the photo�ssion reactions (given in Table 2.2) and the twelve

most important nucleosynthesis reactions [25, 22] (given in Table 1.1).2 (The most

important of these uncertainties is that of the neutron lifetime [4], because this

determines the initial n=p ratio.) I use two di�erent methods (Monte-Carlo and

linear propagation of errors) to �nd the e�ects on the abundances, and I compare

these methods for accuracy and eÆciency.

Moreover, I also perform an analysis that includes the correlations between

the abundances of di�erent elements as each reaction rate is varied separately.

Typically in the literature, such correlations are neglected without justi�cation.

However, some authors have claimed that they may be important [56]. I compare

my analysis with correlations to an analysis that neglects correlations, and I show

2The other uncertainties, e.g., error in the radiative and �nite-temperature corrections, nu-

merical errors in the integration algorithm, etc. are all limited to a fraction of a percent of the

abundances. [55]
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that the correlations have negligible e�ect in the regions of physical interest, thus

justifying the usual practice of neglecting the correlations.

The �rst method I use to take account of the errors in reaction rates is the

Monte-Carlo technique. I assume that each reaction rate is an independent ran-

dom variable drawn from a Gaussian probability distribution function (p.d.f.) with

a standard deviation as given in Table 1.1 or Table 2.2. Then, for each �xed value

of (�X ; mXYX ; �), I perform a multi-dimensional Monte-Carlo over the entire set

of photo�ssion and important nucleosynthesis reactions. I �nd that the result-

ing light-element abundances y2; y3; Y , and log10 y7 are distributed approximately

according to independent, Gaussian p.d.f.'s.3 Therefore, the p.d.f. pth for the

theoretical abundances is given by the product of the Gaussian p.d.f.'s

pGauss(x; �x; �) =
1p
2��

exp

"
�1

2

�
x� �x

�

�2#
(2.5)

for the individual light elements:

pth(yth2 ; y
th
3 ; Y

th; log10 y
th
7 ) = pGauss2 (yth2 )� pGauss3 (yth3 )�

pGauss4 (Y th)� pGauss7 (log10 y
th
7 ): (2.6)

The Monte-Carlo technique can model my assumption of Gaussian reaction-

rate p.d.f.'s as accurately as I please, simply by using a suÆcient number of points.

3Because of the large uncertainty in 7Li, it is more convenient to use log10 y
th
7 . And indeed,

I �nd that the distribution of log10 y
th
7 is �t by a Gaussian slightly better than the distribution

of yth7 . And because of the very poor observational data on 6Li (see Sec. 3.4), there is no reason

to be concerned with the theoretical p.d.f for 6Li, although it too is approximately Gaussian.

32



In practice, I use 1,000 Monte-Carlo points for each value of (�X ; mXYX ; �) in order

to obtain consistent results from simulation to simulation. Total CPU time for

the entire (�X ; mXYX ; �) parameter space (viz., 31� 41� 12 points, for 103 sec �

�X � 109 sec, 10�17 GeV � mXYX � 10�7 GeV, 7:94 � 10�11 � � � 10�9) was

118 days.

However, it has recently been demonstrated that the uncertainties in SBBN

can be quanti�ed by the much quicker method of linear propagation of errors

(LPE) [57]. As a function of the parameters p = (�X ; mXYX ; �) of the theory, I

approximate the change �ai in the abundances ai = (y2; y3; Y; log10 y7), when the

nuclear and photo�ssion reaction rates r� are changed by �r�, as

�ai(p) = ai(p)
X
�

�i�(p)
�r�
r�

(2.7)

where

�i�(p) =
@ ln ai(p)

@r�
: (2.8)

The error matrix (\covariance matrix") for the abundances is then

[�2]ij = ai(p)aj(p)
X
�

�i�(p)�j�(p)
�
�r�
r�

�2
: (2.9)

The diagonal elements of [�2]ij are the variances in the abundances of the elements;

the o�-diagonal elements are related to the linear correlation coeÆcients �ij =

[�2]ij=
q
[�2]ii[�2]jj.

With this method, I compute far fewer than the 1,000 points in reaction space

fr�g (for each value of p = (�X ; mXYX ; �)) than I need in the Monte-Carlo method.

Instead, I need only the abundances for the unperturbed reaction rates (one point),
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and the partial derivatives of the abundances with respect to each reaction (two

points per reaction):

�i�
�r�
r�

= ai(r� +�r�)� ai(r� ��r�)=2ai(r�): (2.10)

Since I am including the uncertainties in 27 nucleosynthesis and photo�ssion re-

actions, I only need to compute 2� 27+ 1 points for each value of p. This results

in a considerable saving of CPU time.

The method of LPE assumes that �r�
r�

is both small and temperature-

independent. As can be seen in Tables 1.1 and 2.2, the one-sigma uncertainties

�r� are no more than 10% of the r�, except for the temperature-dependent reac-

tions 3H(�; )7Li and 3He(�; )7Be. Moreover, �r�
r�

is independent of temperature

for all reactions except 3H(�; )7Li and 3He(�; )7Be. In my BBN simulation, I

use a temperature-dependent �r�
r�

for these two reactions to calculate [�2]ij; in ef-

fect, I average over the thermal history of the early universe. (Namely, I compute

�i� by using Eqn. 2.10.) Because the two temperature-dependent reactions do not

satisfy the assumptions of LPE, I justify this method a posteriori by comparing

its results to the results of the Monte-Carlo. In fact, my numerical calculations

show that the uncertainties computed using LPE di�er by less that 10% from the

uncertainties computed using the Monte-Carlo throughout the theoretical param-

eter space4 for D/H, 3He/H, and 4He. For 6Li and 7Li, the uncertainties di�er by

less that 16%. For my purposes, 10% is an acceptable price for the savings in CPU

4I have not included the regions of parameter space where the errors are so small that round-

o� error dominates.
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time. Although LPE does not work as well for lithium, the observational errors

for this element are far more important than the theoretical error.

Often in the literature, correlations between elements are neglected. A priori,

this is not justi�ed [56], because the o�-diagonal elements of [�2]ij can be of the

same order of magnitude as the diagonal elements, although they are often much

smaller. To investigate this problem, I perform my statistical analysis comparing

my theoretical calculations to the observational data, including the correlations

between elements, and then I repeat the analysis neglecting the correlations (in

e�ect, I set [�2]ij = 0 for i 6= j). I �nd that the two analyses yield substantially the

same results, thus justifying the conventional wisdom that the correlations may be

neglected. Namely, I �nd that throughout the parameter space of (�X ; mXYX ; �),

the di�erence between the two cases in the con�dence level (C.L.) at which theory

disagrees with observation, is less than 0.3%. The reason for this close agreement

between the two cases, despite regions where the correlations are not negligible,

is that the correlations are signi�cant only where theory di�ers from observation

by many standard deviations, so that the con�dence level is extremely close to

100%. When correlations are neglected, theory and observation still disagree by

many standard deviations, and the C.L. is still very close to 100%.

I will discuss my method of analysis in greater detail in Ch. 4. And in Ch. 5,

I will give the results of my analysis, based upon the D and 3He abundance data

from solar-system measurements. But �rst, I consider the other light-element mea-

surements, including the measurements of D/H from quasar absorption systems.
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Figure 2.1: Photon spectrum f = dn=dE for several background temperatures

TBG
 .

36



Figure 2.2: Abundance of D in the mXYX vs. �X plane with (a) � = 2 � 10�10,

(b) � = 4� 10�10, (c) � = 5� 10�10, and (d) � = 6� 10�10.
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Figure 2.3: Same as Fig. 2.2, except for 3He.
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Figure 2.4: Same as Fig. 2.2, except for 4He.
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Figure 2.5: Same as Fig. 2.2, except for 6Li.
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Figure 2.6: Same as Fig. 2.2, except for 7Li.
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Chapter 3

Observed Light-Element Abundances

I now review the observations of the light-element abundances. Two factors

complicate the interpretation of the observations of the light-element abundances.

First, there are several observational results (both for D/H and for 4He) that

are not consistent with each other, within the quoted errors. This fact suggests

that some groups have underestimated their systematic error.1 Deuterium has

special problems in this regard; hence, in this chapter, I will discuss only the

quasar absorption system (QAS) measurements of deuterium. (I will discuss other

observations of deuterium in Ch. 5.) I believe it is premature to judge which

measurements of D/H and 4He are most reliable; hence, I consider all possible

combinations of the observations when I test the consistency between theory and

observation. Second, some guesswork is involved in the extrapolation from the

observed values back to the primordial values, as I shall discuss below. Keeping

these factors in mind, I review the estimations of the primordial abundances of D,

4He, 6Li, and 7Li.

1It is also possible that primordial nucleosynthesis was truly inhomogeneous [58]. This inho-

mogeneous case with a late-decaying particle has been discussed in the literature [59]. However,

in this work I adopt the conventional belief that BBN was homogeneous.
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3.1 D/H in Quasar Absorption Systems

D/H has been measured in the absorption lines of highly red-shifted (and

therefore presumably primordial) HI (neutral hydrogen) clouds that are backlit by

quasars. However, the D/H measurements from these QAS generally fall into two

classes, viz., high and low, that di�er by almost an order of magnitude.

The �rst three measurements (all in the direction of QSO 0014+813) were

high [60, 61, 62], in the range y2 � nD=nH = (1:9 � 2:5) � 10�4. Since these

original observations, there have been additional measurements [63, 64] of high

D/H in this and other QAS. However, Carswell et al. state that there is a signi�cant

likelihood that their \deuterium" may actually be Doppler-shifted hydrogen [61]

in an interloping HI cloud. Steigman [65] claims that this may be the case in other

measurements as well, although Rugers and Hogan [62] say that an interloper is

very unlikely. Finally, Tytler, Burles, and Kirkman [66] reobserved QSO 0014+813

and found that their higher-quality data yield a very large uncertainty in D/H.

On the other hand, Tytler et al. [67] have found much smaller values of D/H,

viz. y2 � (2:4 � 0:4) � 10�5 in the directions of QSO 1937-1009 and QSO 1009-

2956. However, a reanalysis [68] of Tytler's QSO 1937-1009 data yields a much

higher D/H value. Similarly, new data for QSO 1937-1009 [69] also yield higher

D/H.

The weight of opinion in the astrophysics community seems to favor the low

values of Tytler et al., because they have observed more QAS and seem to have
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higher-resolution spectrographs. In personal communications with the author,

S. Burles stated that he believed his lower value was correct, while C. Hogan

believes that both his own higher value and other groups' lower values are equally

plausible. Because the situation still seems unclear, I will perform my analysis for

both values.

For the low value of D/H, I use the recent determination of Burles and

Tytler [70]. This value is slightly higher than their original measurement, be-

cause they use an improved model of the cloud and have a better measurement of

the neutral hydrogen:

Low: yobs2 = (3:39� 0:25)� 10�5: (3.1)

I take the high value of D/H from Rugers and Hogan [62]:

High: yobs2 = (1:9� 0:5)� 10�4: (3.2)

I have plotted both of these one-� ranges as black boxes on the theoretical curve

of D/H as a function of � in Fig. 1.2. The high D/H value favors � ' 1 � 10�10,

while the low value favors � ' 5� 10�10.

In this chapter, I do not consider the proto-solar and interstellar-medium mea-

surements of D and 3He. Because of the diÆculty involved in extrapolating back

to the primordial abundances, I will defer discussion of these observations until

Ch. 5.

3.2 4He
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The primordial 4He abundance is deduced from observations of extragalactic

HII regions (clouds of ionized hydrogen). Currently, there are two classes of Y
obs =

�4He=�baryon reported by several independent groups of observers. Hence, I consider

two cases: one low and one high.

I take my low 4He abundance from Olive, Skillman, and Steigman [41]. They

used measurements of 4He and O/H in 62 extragalactic HII regions, and linearly

extrapolated back to O/H= 0 to deduce the primordial value:

Low: Y obs = 0:234� (0:002)stat � (0:005)syst: (3.3)

(When they restrict their data set to only the lowest metallicity data, they obtain

Y obs = 0:230� 0:003.) Their systematic error comes from numerous sources, but

they claim that no source is expected to be much more than 2%. In particular,

they estimate that stellar absorption is of order 1% or less.

I take my high 4He abundance from Thuan and Izotov [43]. They used mea-

surements of 4He and O/H in a new sample of 45 blue compact dwarf galaxies to

obtain

High: Y obs = 0:244� (0:002)stat � (0:005)syst: (3.4)

The last error is an estimate of the systematic error taken from Izotov, Thuan,

and Lipovetsky [44]. Thuan and Izotov claim that HeI stellar absorption is an

important e�ect; this explains some of the di�erence between their result and that

of Olive, Skillman, and Steigman.

Rather than attempting to judge which group has done a better job of choosing
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their sample and correcting for systematic errors, I prefer to remain open-minded.

Hence, I shall use both the high and low 4He abundances, without expressing a

preference for one over the other. Fig. 1.2 shows both of the one-� ranges for 4He as

boxes on the 4He vs. � curve. The high 4He measurement favors � ' 1�3�10�10,

while the low measurement favors � ' 2� 7� 10�10. Although both the high and

low abundance have the same uncertainties, the high value leads to a much larger

uncertainty in �, because the 4He vs. � curve attens out for high �.

3.3 log(7Li/H)

The 7Li/H abundance is taken from observations of the surfaces of Pop II (old

generation) halo stars. 7Li is a fragile isotope and is easily destroyed in the warmer,

interior layers of a star. Since more massive (or equivalently, hotter) stars are

mixed less, one might hope that the surfaces of old, hot stars consist of primordial

material. Indeed, Spite and Spite [71] discovered a \plateau" in the graph of

7Li abundance vs. temperature of old halo stars, at high temperature. This plateau

is interpreted as evidence that truly primordial 7Li has been detected. Using

data from 41 plateau stars, Bonifacio and Molaro [72] determine the primordial

value log10(y
obs
7 ) = �9:762 � (0:012)stat � (0:05)syst. Bonifacio and Molaro argue

that the data provide no evidence for 7Li/H depletion in the stellar atmospheres

(caused by, e.g., stellar winds, rotational mixing, or di�usion). However, for my

analysis, I shall adopt the more cautious estimate of Hogan [73] that 7Li may

have been supplemented (by production in cosmic-ray spallation) or depleted (by
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nucleosynthesis in stars) by a factor of two: [74]

log10(y
obs
7 ) = �9:76� (0:012)stat � (0:05)syst � (0:3)factor of 2: (3.5)

Again, I have plotted the one-� observational range for 7Li/H on top of the the-

oretical abundance curve in Fig. 1.2. Because I have allowed for the possibility

of a large, factor-of-two error in 7Li/H, this constraint is much weaker than D/H

and 4He, and agrees with both the high and low values of both elements. How-

ever, even if I had chosen a smaller error for 7Li/H, the trough-shaped theoretical

abundance of 7Li/H would lead to both high and low values of �.

3.4 log(6Li/H)

Because 6Li is so much rarer than 7Li, it is much more diÆcult to observe.

Currently, there are insuÆcient data to �nd the \Spite plateau" of 6Li. However,

I can set an upper bound on 6Li/7Li, since it is generally agreed that the evolution

of 6Li is dominated by production through spallation (reactions of cosmic rays with

the interstellar medium). The upper bounds on 6Li/7Li observed in low-metallicity

([Fe/H] � �2:0) halo stars2 range from [75] y6=y7
<� 0:045 to y6=y7

<� 0:13. (Note

that the primordial 6Li and 7Li have both been destroyed in material that has

been processed by stars and is therefore of higher metallicity.)

Rotational mixing models [76] yield a survival factor for 7Li of order 0.05 and

a survival factor for 6Li of order 0.005. Therefore, the upper bound for primordial

2The notation [Fe/H] means log10(Fe=H)� log10(Fe=H)solar.
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6Li/7Li ranges approximately from

yobs6 =yobs7
<� 0:5 to 1:3: (3.6)

Note that this constraint lies well above the theoretical 6Li/H curve in Fig. 1.2 for

the entire range of �. Since I have only a rough range of upper bounds on 6Li, and

no lower bound, I will not use 6Li in my statistical analysis to test the concordance

between observation and theory. Instead, I will just check the consistency of my

theoretical results with the above constraint.
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Chapter 4

Statistical Analysis of Theory and Observation

In this chapter, I describe how I compare my theoretical calculations from

Ch. 2 with the observed abundances from Ch. 3 to arrive at meaningful bounds

on the properties of the radiatively-decaying X particle. I dwell at some length on

this topic, because there has been confusion in the literature as to how to compare

theory and observation, and what such comparisons mean. I then discuss my

results.

4.1 Analysis

In this section, I seek to answer the question, \How well does my simulation

of BBN agree with the observed light-element abundances?" To be more precise,

I rephrase the question as, \At what con�dence level is my simulation of BBN

excluded by the observed light-element abundances?"

From my Monte-Carlo BBN simulation, I obtain the theoretical probabil-

ity density function (p.d.f.) pth(ath) of the simulated light-element abundances

ath = (yth2 ; Y
th; log10 y

th
7 ). I �nd that pth(ath) is well-approximated by the product

of independent, Gaussian probability distribution functions. [See Eqs. (2.5) and

(2.6).] Note that pth(ath) depends upon the parameters p of my theory, e.g. p
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= (�; :::). (The ellipses refer to parameters in non-standard BBN, e.g., mX YX and

�X .) In particular, the means and standard deviations of pth(ath) are functions of

p.

I also construct the p.d.f. pobs(aobs) for the observed light-element abundances,

viz., aobs = (yobs2 ; Y obs; log10 y
obs
7 ). Since the observations of the light element abun-

dances are independent, I can factor the joint probability density:

pobs(aobs) = pobs2 (yobs2 )� pobs4 (Y obs)� pobs7 (log10 y
obs
7 ): (4.1)

I assume Gaussian p.d.f.'s for yobs2 ; Y obs, and log10 y
obs
7 . I use the mean abundances

and standard deviations given in Equations (3.1){(3.5). Since I have two discor-

dant values of D/H and two discordant values of 4He, I considered all four cases.

Consider now �a = ath � aobs. This quantity has a p.d.f. given by

p�(�a) =
Z
daobs pobs(aobs)

Z
dath pth(ath)Æ(�a� (ath � aobs))

=
Z
da pth(a)pobs(a��a); (4.2)

where I have suppressed the dependence of p�(�a) and pth(ath) on the theory

parameters p. Note that when all pthi and pobsi are Gaussian, Eq. (4.2) is easily

integrated to yield a product of three Gaussian p.d.f.'s.:

p�(�a) =
Y
i

1p
2��i

exp

"
�(�ai ���ai)

2

2�2i

#
; (4.3)

where ��ai = �athi � �aobsi , �2i = (�thi )
2 + (�obsi )2 and i runs over (y2; Y; log10y7).

My question can now be rephrased as, \At what con�dence level (C.L.) is
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�a = 0 excluded?" The answer,

C:L:(p) =
Z
f�a:p�(�a;p)>p�(0;p)g

d(�a) p�(�a;p); (4.4)

is used in this dissertation to constrain various scenarios of BBN. Since I have

assumed Gaussian p.d.f.'s, I can easily evaluate this integral. The result is conve-

niently expressed in terms of a �2 function of the abundances:

C:L: =
Z �2

0

1

23=2�(3
2
)
y
1

2 e�
y
2 dy (4.5)

= �
s
2�2

�
exp

 
��

2

2

!
+ erf

0
@
s
�2

2

1
A ; (4.6)

where

�2 =
X
i

(athi � aobsi )2

(�thi )
2 + (�obsi )2

; (4.7)

for ai = (y2; Y; log10 y7), and (�obsi )2 = (�systi )2 + (�stati )2.

The con�dence level is calculated for three degrees of freedom �ai. It denotes

the certainty that a given point p in the parameter space of the theory is excluded

by the observed abundances. In order to compare my theory with a late-decaying

particle (three parameters p: �X ; mXYX , and �) to a theory with a di�erent num-

ber of parameters (e.g., only one in SBBN), one would want to use a �2 variable

in these parameters. This transformation would be possible if the abundances

ai were linear in the theory parameters p. In that case, I could integrate out a

theory parameter such as � and set a C.L. exclusion limit (with a reduced number

of degrees of freedom) on the remaining parameters. However, the ai turn out to

be highly non-linear functions of p, so integrating out a theory parameter turns
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out to have little meaning. Instead, I shall project out various theory parameters

(as explained in Section 4.2.1) to present my results as graphs.

4.2 Results

As I mentioned in Section 3.1, I have two 4He values that have been inferred

from various observed data to be the primordial components. I also have two

primordial D/H values, which are deduced from the spectra of quasar absorption

systems (QAS). In this section, I compare the theoretical calculations with these

observed abundances and show how I can constrain the model parameters in each

of the four cases.

4.2.1 Low 4He (Y obs = 0:234� (0:002)stat� (0:005)syst)

Recalling that the low observed 4He value [Eq. (3.3)] is consistent with the

theoretical calculation at low � in the case of SBBN, I expect that I can ob-

tain rigid constraints on the model parameters for the high observed D/H value

[Eq. (3.2)]. On the other hand, for the low observed D/H value [Eq. (3.1)], I search

the parameter space for regions of better �t than I can obtain with SBBN.

Low QAS D/H (yobs2 = (3:39� 0:25)� 10�5)

In Fig. 4.1, I show the contours of the con�dence level computed using three

elements (D, 4He, and 7Li) for some representative � values (2�10�10; 4�10�10; 5�

10�10; 6 � 10�10). The region of parameter space that is allowed at the 68%
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C.L. extends down to low � (see Fig. 4.1a). Near � = 2 � 10�10, deuterium is

destroyed by an order of magnitude (without net destruction of 4He), so that the

remaining deuterium agrees with the calculated low 4He. I also plotted the regions

excluded by the observational upper bounds on 6Li/7Li. The shaded regions are

y6=y7
>� 0:5, and the darker shaded regions are y6=y7

>� 1:3. Even if I adopt the

stronger bound y6=y7
<� 0:5, my constraints from the other elements are consistent

with the observed 6Li value.

In Fig. 4.2, I show the contours of the con�dence levels for various lifetimes,

�X = 104; 105; 106 sec. As the lifetime decreases, the background temperature at

the time of decay increases, so the threshold energy of double-photon pair creation

decreases. Then, for a �xed mXYX , the number of photons contributing to D

destruction decreases. Thus, for shorter lifetimes, I need larger mXYX in order

to destroy suÆcient amounts of D. The observed abundances prefer non-vanishing

mXYX .

In Fig. 4.3, I show the edges of the projections of the C.L. regions into the

mXYX vs. �X plane. By projection, I mean taking the lowest C.L. value for a �xed

point (�X , mXYX) as � varies.

The lower mXYX region, i.e., mXYX � 10�14 GeV, corresponds to SBBN, since

there are not enough high-energy photons to a�ect the light-element abundances.

It is notable that these regions are outside of the 68% C.L. This fact may suggest

the existence of a long-lived massive particle X, and may be regarded as a hint of

physics beyond the standard model or standard big-bang cosmology.
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For example, in Fig. 4.4 I show the predicted abundances of 4He, D/H, 7Li/H,

and 6Li/H, adopting the model parameters �X = 106 sec and mXYX = 5 �

10�10 GeV. This point lies within the 68% C.L., as seen in Fig. 4.3. The predicted

abundances of 4He and 7Li are nearly the same as in SBBN. Only D is signi�cantly

destroyed; its abundance decreases by about 80%. At low � � (1:7� 2:3)� 10�10

in this model, the predicted abundances of these three elements agree with the

observed values. It is interesting that the produced 6Li abundance can be two

orders of magnitude larger than the SBBN prediction in this parameter region.

The origin of the observed 6Li abundance 6Li/H � O(10�12) is usually explained

by cosmic ray spallation; however, my model demonstrates the possibility that

6Li may have been produced by the photodissociation of 7Li at an early epoch.

My 6Li prediction is consistent with the upper bound Eq. (3.6).

Although mXYX
>� 10�10 GeV is preferred, it is worth noting that SBBN lies

within the 95% C.L. agreement between theory and observation. In Fig. 4.3, the

95% bound for �X
<� 106 sec comes from the constraint that not much more than

90% of the deuterium should be destroyed; for �X
>� 106 sec the constraint is that

deuterium should not be produced from 4He photo�ssion. In Table 4.1, I show the

representative values of mXYX that correspond to the 68% and 95% con�dence

levels respectively, for �X = 104 � 109 sec.

High QAS D/H (yobs2 = (1:9� 0:5)� 10�4)

In the case of low 4He and high D/H, SBBN (i.e., low mXYX) works quite well
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�X = 104 sec 105 sec 106 sec 107 sec 108 sec 109 sec
95% C.L. 9�10�6 9�10�9 1�10�9 7�10�11 2�10�12 7�10�13
68% C.L. f91g�10�6 f71g�10�9 f92g�10�10

Table 4.1: Upper or (lower { upper) bound on mXYX in units of GeV for the case
of low 4He and low D/H. Note that the C.L. is for three degrees of freedom, and
� is varied to give the extreme values for mXYX .

for � � 2�10�10. Thus, I expect that I can strongly bound the parameter space of

the X-decay model. In Fig. 4.5, I show the 68% and 95% C.L. contours for some

representative values of �. At low �, I obtain an upper bound on 4He, primarily

from the constraint on D/H (Fig. 4.5a).

There are also allowed (at better than the 68% C.L.) regions of parameter

space at higher values of eta (see Figs. 4.5b{4.5d). These allowed regions lie at

�X
>� 106 sec where a small amount of 4He is broken down into D. However, these

allowed regions are small, because the parameters must be �nely tuned to target

the D/H abundance to � O(10�4).

In Fig. 4.6, I show the contour plots for some representative �X in the same

manner as in Fig. 4.2.

In Fig. 4.7, I plot the contours projected along the � axis in a fashion similar

to Fig. 4.3. Comparing the constraints on �X and mXYX with the case of low

D/H (Fig. 4.3), I �nd that the 95% boundary is moved to higher mXYX , for

�X
>� 106 sec. This is because D (produced by 4He destruction) is permitted to be

an order of magnitude more abundant than in the case of the low D/H observation.

I show the 68% and 95% C.L. upper bounds on mXYX in Table 4.2 for various
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�X = 104 sec 105 sec 106 sec 107 sec 108 sec 109 sec
95% C.L. 5�10�6 5�10�9 6�10�10 5�10�10 7�10�11 4�10�11
68% C.L. 3�10�6 3�10�9 3�10�10 4�10�10 5�10�11 3�10�11

Table 4.2: Same as Table 4.1, except for low 4He and high D/H.

lifetimes �X .

4.2.2 High 4He (Y obs = 0:244� (0:002)stat� (0:005)syst)

The high observed 4He abundance [Eq. (3.4)] is consistent with the SBBN theo-

retical calculations for both the low and high observed D/H abundances [Eqs. (3.1)

and (3.2)]. Therefore, I expect to be able to constrain the model parameters in

both cases.

Low QAS D/H (yobs2 = (3:39� 0:25)� 10�5)

For four representative � values (2 � 10�10; 4 � 10�10; 5 � 10�10; 6 � 10�10), I

plot the contours of the con�dence level in Fig. 4.8. In Fig. 1.2, one can see that

the SBBN calculations agree with the observed abundances for mid-range values

of the baryon-to-photon ratio (� � 5�10�10). Thus, the upper bound formXYX is

plotted in Fig. 4.8c. Even at a low � (where the SBBN calculation disagrees with

the low observed D/H value), the theoretical calculations can match observed data

in the region 104 sec<� �X
<� 106 sec and mXYX

>� 10�10 because of the signi�cant

destruction of D. In Fig. 4.9, I show the C.L. plots for three typical lifetimes,

�X = 104; 105; 106 sec. Finally, I show the C.L. contours projected along the �
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�X = 104 sec 105 sec 106 sec 107 sec 108 sec 109 sec
95% C.L. 7�10�6 7�10�9 8�10�10 1�10�10 8�10�12 3�10�12
68% C.L. 5�10�6 5�10�9 6�10�10 8�10�11 4�10�12 2�10�12

Table 4.3: Same as Table 4.1, except for high 4He and low D/H.

axis into the mXYX vs. �X plane (Fig. 4.10). Table 4.3 gives the upper bounds

on mXYX (in GeV) that correspond to the 68% and 95% C.L., for some typical

values of the lifetime.

High QAS D/H (yobs2 = (1:9� 0:5)� 10�4)

As in the low D/H case, I now plot C.L. contours for high D/H for four typical

values of � in Fig. 4.11. Since the high 4He and high D/H observed values are

consistent with SBBN calculations for low �, I expect to obtain bounds on �X

and mXYX (e.g., , Fig. 4.11a). In Figs. 4.11b { 4.11d, I see that I also have

allowed regions for �X
>� 106 sec. The reason is same as in the case of low 4He and

high D/H; the �nal D/H abundances are well-balanced between production and

destruction.

In Fig. 4.12, I plot the con�dence level for �X = 104; 105, and 106 sec. The

range of preferred � at the 68% C.L. is relatively narrow, compared to the case of

high D/H and low 4He. This is because the case of high D/H and high 4He is only

consistent in SBBN for low values of �, and in the lifetime range �X � 104 � 106,

the 4He abundance is not a�ected by the radiative decay of X.

Next, I show the 68% and 95% C.L. contours projected along the � axis
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�X = 104 sec 105 sec 106 sec 107 sec 108 sec 109 sec
95% C.L. 2�10�6 3�10�9 3�10�10 4�10�10 5�10�11 3�10�11
68% C.L. 5�10�7 6�10�10 7�10�11 2�10�11 1�10�11 2�10�11

Table 4.4: Same as Table 4.1, except for high 4He and high D/H.

(Fig. 4.13). There is a large region between the 68% C.L. and the 95% (for a

�xed �X) for two reasons. First, the uncertainty in the high observed D/H value

is large. Second, the � predicted from the high observed 4He value has a wide

spread. The overall shape of the 95% C.L. line is very similar to the case of low

4He and high D/H. This is because the constraint for �X
>� 106 sec is particularly

sensitive only to the observed D/H value.

Just as in the case of low 4He, the 95% C.L. contour for the high D/H value

extends to higher mXYX than for the low D/H value, because the new D compo-

nent produced by 4He destruction is allowed to be one order of magnitude larger

than in the case of low D/H. In Table 4.4, I list the upper bounds on mXYX at

the 68% and 95% con�dence levels, for various values of �X .

4.3 Additional Constraints

I now mention additional constraints on my model. First, the the cosmic

microwave background radiation (CMBR) was observed by COBE [2] to very

closely follow a blackbody spectrum. This gives us a severe constraint on particles

with lifetime longer than � 106 sec [77], which is when the double Compton
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process ( + e� *)  +  + e�) freezes out [78].1 After this time, photon number

is conserved, so photon injection from a radiatively decaying particle would cause

the spectrum of the CMBR to assume a Bose-Einstein distribution with a �nite

chemical potential �. COBE [2] observations give us the constraint j�j<� 9:0�10�5.

For small �, the ratio of the injected to total photon energy density is given by

Æ�=� � 0:71�. Thus, I have the constraint

mXYX <� 6� 10�10 GeV
�

�X
106 sec

�� 1

2

for 106 sec<� �X <� 4� 1010 sec : (4.8)

Note that for lifetimes �X longer than 106 sec, the CMBR constraint is comparable

to or slightly stricter than the bounds from BBN that I have discussed above.

In this thesis, I have considered only radiative decays, i.e., decays to pho-

tons and invisible particles. If X decays to charged leptons, the e�ect is similar

to decay to photons, because the charged leptons also generate soft photons in

electromagnetic cascade showers. On the other hand, if X decays only to neutri-

nos, the constraints becomes much weaker. If, for example, X is the gravitino in

the minimal supersymmetric standard model, then it decays into a neutrino and

its superpartner, the sneutrino. The emitted neutrinos scatter o� the background

neutrinos, producing electron-positron pairs that trigger electromagnetic cascades.

But because the interaction between the emitted neutrino and the background

neutrinos is weak, the destruction of the light elements does not occur very eÆ-

1This constraint applies only to particles with lifetime shorter than � 4 � 1010 sec, which

corresponds to the decoupling time of Compton/inverse Compton scattering. After this time,

injected photons do not thermalize with the CMBR.
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ciently [79]. On the other hand, if X decays to hadrons, I expect that my bounds

would tighten, because hadronic showers could be a signi�cant source of D, 3He,

6Li, 7Li, and 7Be [10]. In fact, even though I have assumed that X decays only

to photons, these photons may convert to hadrons in loop diagrams. Thus, the

branching ratio to hadrons is at least of order 1%, if kinematically allowed [11].

Therefore, my photodissociation bounds in this dissertation are conservative.
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Figure 4.1: C.L. in the mXYX vs. �X plane, for low value of 4He and low value

of D/H. I take (a) � = 2 � 10�10, (b) � = 4 � 10�10, (c) � = 5 � 10�10, and (d)

� = 6� 10�10. The shaded regions are y6=y7
>� 0:5, and the darker shaded regions

are y6=y7
>� 1:3.

 68% C.L.

 95% C.L.

 68% C.L.

 95% C.L.

 95% C.L.  95% C.L.
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Figure 4.2: C.L. in the mXYX vs. � plane for various values of �X , for low value

of 4He and low value of D/H.
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Figure 4.3: Contours of C.L. projected along the � axis, for low value of 4He and

low value of D/H.
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Figure 4.4: Predicted abundances of 4He, D/H, 7Li/H and 6Li/H at �X = 106 sec

and mXYX = 5 � 10�10 GeV. I have indicated the regions that are favored by

the low 4He and low D/H observations. The dotted line denotes the 95% C.L.,

and the shaded region denotes the 68% C.L. The predicted 6Li abundance is two

orders of magnitude larger than it is in SBBN.
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Figure 4.5: Same as Fig. 4.1, except for low value of 4He and high value of D/H.

 68% C.L.

 95% C.L.

 68% C.L.

 95% C.L.

 68% C.L.

 95% C.L.

 68% C.L.

 95% C.L.
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Figure 4.6: Same as Fig. 4.2, except for low value of 4He and high value of D/H.
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Figure 4.7: Same as Fig. 4.3, except for low value of 4He and high value D/H.
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Figure 4.8: Same as Fig. 4.1, except for high value of 4He and low value of D/H.

 68% C.L.

 95% C.L.

 68% C.L.

 95% C.L.

 68% C.L.

 95% C.L.

 68% C.L.

 95% C.L.
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Figure 4.9: Same as Fig. 4.2, except for high value of 4He and low value of D/H.
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Figure 4.10: Same as Fig. 4.3, except for high value of 4He and low value of D/H.
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Figure 4.11: Same as Fig. 4.1, except for high value of 4He and high value of D/H.

 68% C.L.

 95% C.L.

 68% C.L.

 95% C.L.

 68% C.L.

 95% C.L.

 68% C.L.

 95% C.L.
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Figure 4.12: Same as Fig. 4.2, except for high value of 4He and high value of D/H.
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Figure 4.13: Same as Fig. 4.3, except for high value of 4He and high value of D/H.
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Chapter 5

Analysis Based on Proto-Solar Observations

In the preceding chapters, I have set BBN constraints on a long-lived,

radiatively-decaying particle by comparing the predictions of my theory to the

observed light-element abundances. I have taken my deuterium abundance from

observations of highly red-shifted quasar absorption systems. However, I was not

able to use 3He, because there are no primordial observations of that isotope.

Moreover, the existence of incompatible high and low measurements of deuterium

in quasar absorption systems (QAS) casts some doubt on the QAS data.

In this chapter, I will repeat my analysis of BBN with a radiatively decaying

particle. However, this time I use proto-solar and interstellar-medium (ISM) ob-

servations of D and 3He (instead of QAS observations of D). Since proto-solar and

ISM material is not primordial, I will have to make a few general assumptions

about the chemical evolution of D and 3He. In return for these assumptions, I

will get another constraint (3He) on the parameters (�X ; mXYX ; �) of my theory.

I begin by reviewing the proto-solar and ISM measurements of (D+3He)/H and

3He/H. Next, I explain how I modify my analysis to account for the chemical evo-

lution of D and 3He. Finally, I present my results (for both high and low 4He, as

in the previous chapter).
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5.1 Proto-Solar Data on (D+3He)/H and 3He/H

Deuterium is very fragile, with a binding energy of just 2.2 MeV. Young stars

convert all of their D to to 3He through D(p; )3He. Because of this, (D+3He)/H

is an easier quantity to evolve back in time than D/H.

In its pre{main-sequence phase, before 3He began to be converted into 4He, the

sun was fully convective. All D was mixed down into the warmer, interior layers

of the sun, where it was converted into 3He. But 30 Myr before the sun became

a main-sequence star, the convection zone had shrunk to its present depth, viz.,

the outer 30% of the sun [80]. Since then, the 3He/4He ratio on the surface of the

sun has remained constant. This 3He on the surface of the sun today is the sum

of the proto-solar (indicated by �) D and 3He:

y�23 � y�2 + y�3 (5.1)

=
�
n4He

nH

�
�

�
n3He

n4He

�
today

: (5.2)

(3He=4He)today is measured in the solar wind; the proto-solar 4He/H is measured

in the sun's surface [81]. The resulting value for the proto-solar abundance of D

and 3He is [82, 12]

y�23 = (4:09� 0:92)� 10�5: (5.3)

As can be seen in Fig. 1.2, this value (gray box) favors high �, if it is representative

of the primordial value.

The proto-solar 3He/H abundance is taken from trapped gases found in mete-

orites. One has to be careful to take the \planetary" gases, which originated in
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the pre-solar nebula, rather than the \solar" gases, which were captured from the

solar wind, and hence have been processed in the sun. I use the value [82, 12]

y�3 = (1:52� 0:34)� 10�5: (5.4)

I have plotted the upper bound as gray arrows in Fig. 1.2, since the proto-solar

value is likely to be greater than the primordial value. The �gure shows that

3He/H seems to exclude very small �. This is only an intuitive argument; in the

next section, I describe my proper analysis that includes the joint evolution of D

and 3He.

In addition to the proto-solar abundances of D and 3He, I will use the

interstellar-medium abundance of deuterium in my analysis. This abundance is

deduced through measurements of Lyman absorption lines to be [83]

yism2 = (1:6� 0:2)� 10�5: (5.5)

Finally, I need the primordial and proto-solar mass fractions of 1H [12]:

X = 0:76� 0:02; (5.6)

X� = 0:70� 0:02: (5.7)

Their ratio is

� � X�=X = (0:92� 0:04): (5.8)

5.2 Proto-Solar Analysis
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As in the QAS analysis in Ch. 4, I will �nd the con�dence level at which my

theoretical calculations of the abundances ath = (yth2 ; y
th
3 ; Y

th; log10 y
th
7 ) agree with

the abundances aobs = (yobs2 ; yobs3 ; Y obs; log10 y
obs
7 ) deduced from observation. The

C.L. is again given by the integral (4.4) over the probability distribution function

(p.d.f.) p�(�a) of the di�erence between the theoretical and observed abundances

(see Eq. (4.2)).

Instead of making the standard assumption (as I did in Ch. 4) that the the-

oretical abundances are independent, here I will allow them to have a general

multivariate p.d.f.:

pth(ath; �ath; [�2]ij) =

 
1p
2�

!4
1q

det([�2]ij)
exp

�
�1

2
[ath � �ath]i[�

�2]ij[ath � �ath]j

�
;

(5.9)

where [��2]ij is the inverse of the covariance matrix from Sec. 2.3.

The p.d.f. of the observed abundances is more complicated, because I need

to account for the chemical evolution of D and 3He. However, I can simplify the

problem somewhat, because 4He and 7Li still have independent, Gaussian p.d.f.'s:

pobs(aobs) = p23(y
obs
2 ; yobs3 )�

pGauss4 (Y obs)� pGauss7 (log10 y
obs
7 ); (5.10)

where the means and standard deviations of pGauss4 and pGauss7 depend upon the

parameters p = (�X ; mXYX ; �) of the theory. To �nd the joint p.d.f. of the

primordial abundances yobs2 and yobs3 , I use an analysis similar to that of Hata et

al. [84], which is based on the chemical evolution model of Steigman and Tosi [12,
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85]. First, I assume that stars convert all of their deuterium into 3He. Therefore,

the ratio of the proto-solar abundance of D (mass fraction X�
2 ) to the primordial

abundance of D (mass fraction X2) is equal to the fraction f � 1 of gas that was

never part of a star: X�
2 =X2 = f . My second assumption is that an unknown

amount of 3He (primordial mass fraction X3, proto-solar mass fraction X�
3 ) is

produced in stars (in excess of the D that is destroyed), and that the amount of

3He that survives stellar processing and is returned to the interstellar medium is

given by the \survival fraction" g3, which is plausibly in the range [84]

0:25 < g3 < 0:50: (5.11)

This gives me a constraint on the proto-solar 3He:

X�
3 � fX3 + (1� f)g3(X3 + 3X2=2): (5.12)

Thus, I derive the following constraints on the primordial abundances yobs2 ; yobs3 of

D/H and 3He/H:

�y�2 � yobs2 ; (5.13)

0 � (yobs2 )2 + (yobs3 � �y�2 �
�y�3
g3

)yobs2

+yobs3 y�2 �(
1

g3
� 1); (5.14)

where � = X�=X is the ratio of the proto-solar and primordial mass fractions of

hydrogen. Since D decreases monotonically with time, I also have

�yism2 � yobs2 ; (5.15)
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where yism2 is the present-day D/H ratio in the interstellar medium.

For �xed g3; �; y
�
3 ; y

ism
2 , and y�2 = y�23 � y�3 , I assume a at p.d.f. for y

obs
2 ; yobs3 ,

subject to the constraints (5.13), (5.14), and (5.15). I weight these at p.d.f.'s by

a top-hat p.d.f. for g3 (see Eq. (5.11)) and by Gaussian p.d.f.'s for y�23; y
�
3 ; y

ism
2 ,

and �, where the means and standard deviations of these quantities are given in

Eqs. (5.3), (5.4), (5.5), and (5.8). This gives me the p.d.f. for yobs2 ; yobs3 .

My con�dence level is now calculated for four degrees of freedom ai, rather

than the three degrees of freedom in Ch. 4, because of the inclusion of 3He. Again,

the abundances athi are highly non-linear functions of the theory parameters p =

(�X ; mXYX ; �), so it does not make sense to integrate out a theory parameter to

reduce the number of degrees of freedom. Instead, I shall present my results using

the same projection procedure as in the previous chapter.

5.3 Results

The proto-solar measurements of D and 3He favor high �. Therefore, SBBN

works well in the case of high 4He, but not in the case of low SBBN. In the former

case, I can place upper bounds on my model parameters, while in the latter, I

investigate whether a non-standard scenario of BBN can work signi�cantly better

than SBBN.

5.3.1 Low 4He (Y obs = 0:234� (0:002)stat� (0:005)syst)

Fig. 5.1 shows the 95% C.L. contour computed using four elements (D, 3He,
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4He, and 7Li). The contour is shown in the mXYX vs. �X plane for several repre-

sentative baryon-to-photon ratios (� = 2� 10�10; 4� 10�10; 5� 10�10; 6� 10�10).

The disjoint regions in Fig. 5.1a are an artifact of the low resolution of the plot;

the true allowed region is a single, long, thin strip. Note that for � = 6� 10�10,

no region is allowed at the 95% C.L. Moreover, no region is allowed at the 68%

C.L. for any �. As in Ch. 4, the allowed region is consistent with the constraints

from 6Li/7Li.

Since the proto-solar data favor high �, as indicated by the gray lines in Fig. 1.2,

this case is similar to that of the low QAS data (c.f. Fig. 4.1). In both cases, the

most favored region of parameter space is at �X
<� 106 sec, mXYX

>� 10�10 GeV,

and � = 2 to 4� 10�10 (see Fig. 5.1a).

Another way to see the allowed region is in the mXYX vs. � plane at �xed

�X , as in Fig. 5.2. The SBBN allowed range of � is shown at small mXYX . In

the proto-solar case, lower � is allowed than in the low QAS case (c.f. Fig. 4.2),

because the uncertainty in D/H is larger. At larger mXYX , a lower � is allowed

(which produces more D and 3He), because high-energy photons photodissociate

D and 3He. However, the upper bound on 3He/H excludes � <� 2� 10�10. At still

larger mXYX , all elements are overly photodissociated.

Fig. 5.3 shows the edge of the projection of the 95% C.L. region into the mXYX

vs. �X plane. As in Ch. 4, I project by taking the lowest C.L. value as I vary �

for each (�X , mXYX). In Table 5.1, I show representative values of mXYX that

correspond to the 95% C.L. upper bound for �X = 104 � 109 sec.
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�X = 104 sec 105 sec 106 sec 107 sec 108 sec 109 sec
95% C.L. 3�10�5 1�10�8 6�10�10 2�10�13 3�10�14 < 1�10�14

Table 5.1: Upper bound on mXYX in units of GeV for the case of low value of 4He,
and proto-solar (D+3He)/H and 3He/H. Note that the C.L. is for four degrees of
freedom, and � is varied to give the maximum values for mXYX .

There are two main di�erences between the proto-solar and low QAS cases.

First, because of their low binding energies, D and 3He together yield a stronger

constraint at high �X than D alone, and they exclude the \�nger" in Fig. 4.3 at

�X � 3 � 106 sec and mXYX � 10�10 GeV. Second, the four elements in the

proto-solar case provide a stronger constraint than the three elements in the QAS

case, so that no region is allowed at the 68% C.L. Thus, a radiatively decaying

particle does not provide a very good solution to the \crisis" of Hata et al. [84].

5.3.2 High 4He (Y obs = 0:244� (0:002)stat� (0:005)syst)

High observed 4He favors high �, so it is consistent with the proto-solar

(D+3He)/H and 3He/H in SBBN (see Fig. 1.2). This case is similar to that of

high 4He and low QAS D/H. Thus, I shall constrain my model parameters in this

case.

In Fig. 5.4, I show the 68% and 95% C.L. contours at (a) � = 2 � 10�10, (b)

� = 4 � 10�10, (c) � = 5 � 10�10, and (d) � = 6 � 10�10. Note that again, my

constraints are consistent with the shaded upper bounds from 6Li/7Li.

I predicted that this case would be similar to that of high 4He and low QAS

D/H; however, Fig. 5.4 appears rather di�erent from Fig. 4.8, especially panels
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�X = 104 sec 105 sec 106 sec 107 sec 108 sec 109 sec
95% C.L. 3�10�5 6�10�9 6�10�10 1�10�12 1�10�13 < 1�10�14
68% C.L. 1�10�5 3�10�9 3�10�10 3�10�13 3�10�14 < 1�10�14

Table 5.2: Same as Table 5.1, except for high 4He.

(b) and (d). The proto-solar case is more easily compared to the QAS case at

constant �X , as in Fig. 5.5. Comparing this to Fig. 4.9, one can see that in

SBBN (low mXYX), both cases favor � � 5� 10�10, although the proto-solar case

allows a much wider range of �. This is because the low QAS D/H value has

extremely small error bars. The other main di�erence between the two cases is

that low � is not allowed by the proto-solar data, even for the non-standard regions

(mXYX
>� 10�10 GeV). This is because of the upper bound on 3He/H (see the gray

lines in Fig. 1.2).

Fig. 5.6 shows the C.L. contours projected along the � axis into the mXYX

vs. �X plane. Note that the combination of (D+3He)/H and 3He/H provides a

strong bound at long lifetimes and forbids a \�nger" near the center of the plot

(c.f. Fig. 4.10). Table 5.2 gives the 68% and 95% C.L. upper bounds on mXYX

for various of �X .

As I discussed in Section 4.3, the blackbody spectrum of the cosmic microwave

background radiation imposes an additional constraint on X, for lifetimes �X

longer than 106 sec (see Eqn (4.8)). However, the CMBR constraint is not as

strong as the limits set by the combination of (D+3He)/H and 3He/H for both

high and low 4He. Hadronic decays of X would lead to stricter constraints on the
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model parameters mXYX , �X , and �, because hadronic showers lead to eÆcient

production of the light elements.
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Figure 5.1: 95% C.L. in the mXYX vs. �X plane, for low value of 4He, and proto-

solar (D+3He)/H and 3He/H. The allowed regions lie (a) inside the contours,

and (b,c) below and to the left of the contours. I take (a) � = 2 � 10�10, (b)

� = 4� 10�10, (c) � = 5� 10�10, and (d) � = 6� 10�10. The shaded regions are

y6=y7
>� 0:5, and the darker shaded regions are y6=y7

>� 1:3.
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Figure 5.2: 95% C.L. in themXYX vs. � plane for various values of �X , for low value

of 4He, and proto-solar (D+3He)/H and 3He/H. The allowed regions lie within the

contours.
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Figure 5.3: 95% C.L. contour projected along the � axis, for low value of 4He, and

proto-solar (D+3He)/H and 3He/H. The allowed region lies below and to the left

of the contour.
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Figure 5.4: Same as Fig. 5.1, except for high value of 4He. The solid line is the

95% C.L.; the dotted line is the 68% C.L.
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Figure 5.5: Same as Fig. 5.2, except for high value of 4He. The solid line is the

95% C.L.; the dotted line is the 68% C.L.
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Figure 5.6: Same as Fig. 5.3, except for high value of 4He. The solid line is the

95% C.L.; the dotted line is the 68% C.L.
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Chapter 6

Models

So far, I have discussed general constraints from BBN on radiatively decaying

particles. In the minimal standard model, there is no such particle. However,

some extensions of the standard model naturally result in such exotic particles,

and the light-element abundances may be a�ected signi�cantly in these cases. In

this section, I present several examples of such radiatively decaying particles, and

discuss the constraints.

In particular, I will consider particles in supergravity models [86]. Global su-

persymmetry (SUSY), a symmetry between fermions and bosons, is attractive

because it can solve the gauge hierarchy problem (viz., how the electroweak scale

can be so much smaller than the Planck scale, despite renormalization). Super-

symmetry solves this problem because positive contributions from bosonic loop

integrals are precisely canceled by negative contributions from the corresponding

fermionic loop integrals. When SUSY is gauged, it automatically includes gravity;

hence, local supersymmetry is known as \supergravity."

6.1 Gravitino

My �rst example of a long-lived particle is the gravitino  , which appears in
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all the supergravity models. The gravitino is the superpartner of the graviton,

and its interactions are suppressed by inverse powers of the reduced Planck scale

M� ' 2:4�1018 GeV [87]. Because of this suppression, the lifetime of the gravitino

is very long. Assuming that the gravitino's dominant decay mode is to a photon

and its superpartner (the photino), the gravitino's lifetime is given by

�3=2 ' 8�M2
�

m3
3=2

' 4� 105 sec�(m3=2=1 TeV)
�3; (6.1)

where m3=2 is the gravitino mass. Notice that the gravitino mass is O(100 GeV�

1 TeV) in models in which SUSY breaking is communicated by gravity from a

hidden sector to the SUSY sector. Such a mass for the gravitino results in a

lifetime that may a�ect the primordial light-element abundances.

If the gravitino is in thermal equilibrium in the early universe, then its energy

density is of order T 4, as given in Eq. (1.16). If the gravitino is not diluted,

then it matter-dominates the universe when the temperature falls below m3=2.

This completely spoils the (near) success of BBN theory. Usually, this problem

is solved by introducing ination, which dilutes away the primordial gravitinos.

After reheating at the end of ination, a smaller number of gravitinos are produced

through the scattering processes of thermal particles. The abundance Y3=2 =

n3=2=n of gravitinos depends on the reheating temperature TR, and is given by [8]

Y3=2 ' 3� 10�11 � (TR=10
10 GeV): (6.2)

Therefore, if the reheating temperature is too high, then gravitinos are overpro-

duced, and too many light nuclei are photodissociated when the gravitinos decay.
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My constraints on (�X ; mXYX) from Chapters 4 and 5 can be transformed into

constraints on (m3=2; TR). In Figures 6.1 and 6.2, I show the transformations of

the projected 95% C.L. boundaries from Figs. 4.3, 4.7, 4.10, 4.13, 5.3, and 5.6.

The proto-solar data yield tighter constraints on TR for all m3=2 than the QAS

data, particularly at low m3=2 (long lifetimes). For several values of the gravitino

mass, I quote the most conservative (i.e., weakest) upper bound on the reheating

temperature from Figs. 6.1 and 6.2:

m3=2 = 100 GeV (�3=2 ' 4� 108 sec) : TR<� 3� 108 GeV;

m3=2 = 1 TeV (�3=2 ' 4� 105 sec) : TR<� 1� 109 GeV;

m3=2 = 3 TeV (�3=2 ' 1� 104 sec) : TR<� 3� 1011 GeV:

If the gravitino is heavy enough (m3=2
>� 5 TeV), then its lifetime is too short to

destroy even D. In this case, my only constraint is from the overproduction of 4He.

If the gravitino mass is lighter, then the lifetime is long enough to destroy D or

even 4He. In this case, my constraint on the reheating temperature is more severe.

6.2 Bino

Another example of my decaying particle is the lightest superparticle in the

minimal supersymmetric standard model (MSSM) sector1, if it is heavier than

the gravitino. In many theories, the lightest superparticle is the \neutralino"|a

1The MSSM consists of the standard model particles, their superpartners, two Higgs bosons,

and their superpartners.
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linear combination of the superpartners of the photon, Z boson, and Higgs bosons.

In these theories, the lightest neutralino can decay into a high-energy photon and

a gravitino. Thus, I may use BBN to constrain the MSSM.

The abundance (1.20) of the lightest neutralino is determined by the temper-

ature TF at which it freezes out of the thermal bath. In a theory with heavier

sfermions2, the neutralino (mass m) has a smaller annihilation cross section �,

so it freezes out at a higher temperature (when the annihilation rate falls below

the expansion rate: �(mTF )
3=2 exp(�m=TF ) � �<�H � T 2

F=M�), with a higher

thermal abundance. Thus, the upper bound on mXYX can be translated into an

upper bound on the mass scale of the sfermions.

In order to investigate this scenario, I consider the simplest case where the

lightest neutralino is (almost) purely bino ~B (the superpartner of the U(1) gauge

boson B). In this case, the lightest neutralino pair-annihilates through squark

and slepton exchange. In particular, if the right-handed sleptons are the lightest

sfermions, then the dominant annihilation is ~B + ~B ! l+ + l�. The annihilation

cross section of this process is given by [88]

h�vreli = 8��21hv2i
8<
: m2

~B

(m2
~B
+m2

~lR
)2
� 2m4

~B

(m2
~B
+m2

~lR
)3
+

2m6
~B

(m2
~B
+m2

~lR
)4

9=
; ; (6.3)

where hv2i is the thermal average of the square of the velocity of the bino, and

I have added the contributions from all three generations by assuming that the

2Squarks, sleptons, and sfermions are the respective superpartners of the quarks, leptons, and

standard model fermions.
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right-handed sleptons are degenerate.3 With this annihilation cross section, the

Boltzmann equation for the number density of binos is given by

_n ~B + 3Hn ~B = �2h�vreli(n2~B � (nEQ~B )2); (6.4)

where nEQ~B is the equilibrium number density of binos. The factor 2 is present

because two binos annihilate into leptons in each interaction. I solved this equation

and obtained the mass density of the bino as a function of the bino mass and the

right-handed slepton mass. (For details, see e.g., Ref. [14]). Numerically, for

m ~B = 100 GeV, mXYX ranges from � 10�9 GeV to � 10�5 GeV as I vary m~lR

from 100 GeVto 1 TeV. If mXYX is in this range, the primordial light-element

abundances are a�ected signi�cantly, unless the lifetime of the bino is shorter than

104 { 105 sec (see Figs. 2.2 { 2.6). The lifetime of the bino is given by

� ~B =

2
4 1

48�

m5
~B
cos2 �W

m2
3=2M

2�

3
5
�1

' 7� 104 sec�
�

m ~B

100 GeV

��5 � m3=2

1 GeV

�2
: (6.5)

Notice that the lifetime becomes shorter as the gravitino mass decreases; hence,

too much D and 7Li are destroyed if the gravitino mass is too large. The constraints

given in Figs. 4.3, 4.7, 4.10, 4.13, 5.3, and 5.6 therefore become upper bounds on

the gravitino mass. Since the abundance of the bino is an increasing function

of the slepton mass m~lR
, the upper bound on the gravitino mass is more severe

for larger slepton masses. For example, for m ~B = 100 GeV, the upper bounds

on the gravitino mass are shown in Fig. 6.3 and Fig. 6.4. For all values of the

3If the bino is heavier than the top quark, then the s-wave contribution annihilating into top

quarks becomes important. In this work, I do not consider this case.
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slepton mass, the QAS data give a much stronger constraint than the proto-solar

data. For some representative values of the slepton mass, the most conservative

constraints are:

m~lR
= 100 GeV : m3=2<� 4 GeV;

m~lR
= 300 GeV : m3=2<� 2 GeV;

m~lR
= 1 TeV : m3=2<� 700 MeV:

As expected, for a larger value of the slepton mass, the primordial abundance of

the bino gets larger, and the upper bound on the gravitino mass becomes smaller.

6.3 Modulus

Another interesting source of high-energy photons is a modulus �eld �. Moduli

are massless scalars that arise in string-inspired supergravity theories due the

compacti�cation of extra spatial dimensions. A modulus �eld acquires mass from

SUSY breaking. In many models, the modulus mass m� is of the same order as

the gravitino mass (see for example [89]); with such a mass, the modulus is a

candidate for my long-lived, massive X particle.

The equation of motion of a modulus with a simple quadratic potential in an

expanding universe follows from conservation of energy-stress T �
�;� = 0 [14]:

��+ 3H _�+ �� _�+m2
�� = 0 (6.6)

In the early universe, the mass of the modulus �eld is negligible compared to the

expansion rate of the universe. Thus, the modulus �eld is a strongly-overdamped
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harmonic oscillator, so the modulus amplitude may sit far from the minimum of

its potential. Since the only scale parameter in supergravity is the Planck scale

M�, the initial amplitude �0 is naively expected to be of O(M�). However, this

initial amplitude is too large; the modulus would matter-dominate the universe,

and photons from its decay would distort the spectrum of the cosmic microwave

background radiation. In this model, I regard �0 as a free parameter on which I

can set an upper bound.

Once the expansion rate becomes smaller than the mass of the modulus �eld,

the modulus �eld begins to oscillate. Assuming homogeneity, the energy density

and pressure are

�� =
1

2
_�2 +

m2

2
�2 (6.7)

p� =
1

2
_�2 � m2

2
�2 (6.8)

The average of the pressure over a period is zero; the average of the energy density

is h _�2i, so the averaged energy density evolves as

_�� + 3H�� + ���� = 0: (6.9)

Therefore, �� red-shifts as a�3 (where a is the scale factor), and the oscillating

modulus behaves as non-relativistic matter. The modulus eventually decays when

the expansion rate becomes comparable to its decay rate

�� =
1

��
' m3

3=2

8�M2�
' 1

4� 105 sec
�
�
m3=2

1 TeV

�3
: (6.10)

Without entropy production from another source, the modulus density at the
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decay time is approximately

m�Y� =
��
n
� 5� 1010 GeV� (m�=1 TeV)

1=2(�0=M�)2: (6.11)

As in my other models, I can convert my constraints on (�X ; mXYX) (Figs. 4.3,

4.7, 4.10, 4.13, 5.3, and 5.6) into constraints on (m�; �0). For small m3=2 (long

lifetimes), the proto-solar data give a tighter constraint, because too much 3He is

dissociated. But for higher masses, the QAS data give a slightly stronger con-

straint. Using the most conservative of these 95% C.L. constraints from Figs. 6.5

and Figs. 6.6, I still obtain very stringent bounds on the initial amplitude of the

modulus �eld �0:

m� = 100 GeV (�� � 4� 108 sec) : �0<� 1� 108 GeV;

m� = 1 TeV (�� � 4� 105 sec) : �0<� 5� 108 GeV;

m� = 3 TeV (�� � 1� 104 sec) : �0<� 2� 1010 GeV:

Clearly, my upper bound from BBN rules out the naive expectation that �0 �M�.

It is important to notice that (conventional) ination cannot solve this diÆculty

by diluting the coherent mode of the modulus �eld. This is because the expansion

rate of the universe is usually much larger than the mass of the modulus �eld, so

the modulus �eld has not yet begun to oscillate. Thus, the modulus has constant

amplitude and energy density throughout an early inationary epoch. One attrac-

tive solution is a thermal ination model proposed by Lyth and Stewart [90]. In

the thermal ination model, a late mini-ination of about 10 e-folds reduces the

modulus density. Even if thermal ination occurs, there may remain a signi�cant
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modulus energy density that decays to high-energy photons. Thus, BBN gives a

stringent constraint on the thermal ination model.
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Figure 6.1: Contours of 95% C.L., yielding an upper bound on the reheating

temperature, as a function of the gravitino mass. QAS data are used for the

observed D/H ratio.
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Figure 6.2: Contours of 95% C.L., yielding an upper bound on the reheating

temperature, as a function of the gravitino mass. Proto-solar data are used for

the observed D/H and (D+3He)/H ratios.
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Figure 6.3: Contours of 95% C.L., yielding an upper bound on the gravitino mass,

as a function of the right-handed slepton mass. QAS data are used for the observed

D/H ratio.
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Figure 6.4: Contours of 95% C.L., yielding an upper bound on the gravitino mass,

as a function of the right-handed slepton mass. Proto-solar data are used for the

observed D/H and (D+3He)/H ratios.
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Figure 6.5: Contours of 95% C.L., yielding an upper bound on the the initial

modulus amplitude �0, as a function of the modulus mass. QAS data are used for

the observed D/H ratio.
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Figure 6.6: Contours of 95% C.L., yielding an upper bound on the the initial

modulus amplitude �0, as a function of the modulus mass. Proto-solar data are

used for the observed D/H and (D+3He)/H ratios.
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Chapter 7

Conclusion

I have discussed the photodissociation of light elements due to the radiative

decay of a massive particle, and I have shown how I can constrain my model

parameters from the observed light-element abundances. I adopted two quasar

absorption system (QAS) D/H values, as well as solar-system data for D/H and

3He/H. For each of these, I have used two 4He values.

I present my results in terms of the con�dence level at which each theoret-

ical parameter set (i.e., the set of properties of a radiatively decaying particle)

is excluded by the observed abundances. My algorithm for computing the con-

�dence level is consistent and general enough to apply not only to the scenarios

investigated in this work, but also to many other non-standard theories of BBN.

When I adopt the low 4He and low QAS D/H values, I �nd that a non-vanishing

amount of such a long-lived, massive particle is preferred: mXYX
>� 10�10 GeV for

104 sec<� �X
<� 106 sec. On the other hand, consistency with the observations

imposes upper bounds on mXYX in each of the four QAS cases.

Proto-solar (D+3He)/H and proto-solar 3He/H prefer high �, just as low QAS

D/H, so these cases (both high and low 4He) resemble my analyses for low QAS

D/H. However, in order to compare these observations to my theoretical calcula-
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tion of the primordial light-element abundances, I need to extrapolate the obser-

vations back to the primordial abundances. To this end, I use the very general

chemical evolution model of Steigman and Tosi [12]. With only a few mild assump-

tions, I �nd that for low 4He, a non-vanishing abundance of long-lived, massive

particles is slightly preferred. And in both the high and low 4He cases, I can

impose upper bounds on mXYX .

In deriving these results, I have included the uncertainties in the light-element

abundances due to the uncertainties in the nuclear reaction rates. To accomplish

this, I used two algorithms: Monte-Carlo, and linear propagation of errors. Linear

propagation of errors is much faster, and I have demonstrated that it yields re-

sults comparable to those of the Monte-Carlo throughout my non-standard BBN

parameter space (to within a 16% di�erence in the error).

Another issue I have investigated is the importance of the correlations between

the abundances of various elements, as the reaction rates are varied. Conventional

wisdom is that these correlations may be neglected, thus simplifying the calcula-

tion. However, it has been pointed out [56] that the correlations between elements

can be quite large. To resolve this question for my model, I performed my analysis

with and without correlations, and compared the results. I found that correlations

can safely be neglected, because they are large only in regions that are excluded

by a large disagreement between theory and observation.

I have also studied the photodissociation of 7Li and 6Li in this dissertation.

These processes do not a�ect the D/H and 4He abundances, because 7Li/H and
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6Li/H are many orders of magnitude less abundant than D/H and 4He. When

I examine the region of parameter space where the predicted abundances agree

well with the observed 7Li/H, the low 4He, and the low QAS D/H or proto-

solar (D+3He)/H observations, I �nd that the produced 6Li/H may be of order

10�12, which is two orders of magnitude larger than the prediction of SBBN (see

Figs. 2.5 and 4.4). The predicted 6Li is consistent with the observed upper bound

Eq. (3.6) throughout the region of parameter space in which I am interested.

Although currently it is believed that the observed 6Li is produced by spallation,

my model suggests another origin: the observed 6Li may be produced by the

photodissociation of 7Li.

Finally, I have discussed candidates for my radiatively decaying particle. My

�rst example is the gravitino. In this case, I can constrain the reheating temper-

ature after ination, because it determines the abundance of the gravitino. I ob-

tained the stringent bounds TR
<� 108 GeV�109 GeV for 100 GeV<�m3=2

<� 1 TeV.

My second example is the lightest neutralino that is heavier than the gravitino.

When the neutralino is the lightest superparticle in the MSSM sector, it can de-

cay into a photon and a gravitino. If I assume the lightest neutralino is pure

bino, and its mass is about 100 GeV, then the relic number density of binos is

related to the right-handed slepton mass, because binos annihilate mainly through

right-handed slepton exchange. For this case, I obtained an upper bound on the

gravitino mass, m3=2
<� 700 MeV � 4 GeV for 100 GeV<�m~lR

<� 1 TeV. My third

example is a modulus �eld. I obtained a severe constraint on its initial amplitude:

107



�0
<� 108 GeV� 109 GeV for 100 GeV<�m3=2

<� 1 TeV. This bound is well below

the Planck scale, so it suggests the need for a dilution mechanism, such as thermal

ination.
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